Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Biomater Sci ; 12(14): 3582-3599, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38904161

ABSTRACT

Nanostructured 7-9-residue cyclic and unstructured lipopeptide-based facial detergents have been engineered to stabilize the model integral membrane protein, bacteriorhodopsin. Formation of a cylindrical-type micelle assembly induced by facial amphipathic lipopeptides resembles a biological membrane more effectively than conventional micelles. The hydrophobic face of this cylindrical-type micelle provides extended stability to the membrane protein and the hydrophilic surface interacts with an aqueous environment. In our present study, we have demonstrated experimentally and computationally that lipopeptide-based facial detergents having an unstructured or ß-turn conformation can stabilize membrane proteins. However, constrained peptide detergents can provide enhanced stability to bacteriorhodopsin. In this study, we have computationally examined the structural stability of bacteriorhodopsin in the presence of helical, beta-strand, and cyclic unstructured peptide detergents, and conventional detergent-like peptides. Our study demonstrates that optimal membranomimetics (detergents) for stabilizing a specific membrane protein can be screened based on the following criteria: (i) hydrodynamic radii of the self-assembled peptide detergents, (ii) stability assay of detergent-encased membrane proteins, (iii) percentage covered area of detergent-encased membrane proteins obtained computationally and (iv) protein-detergent interaction energy.


Subject(s)
Bacteriorhodopsins , Lipopeptides , Nanostructures , Protein Stability , Bacteriorhodopsins/chemistry , Nanostructures/chemistry , Lipopeptides/chemistry , Detergents/chemistry , Micelles , Hydrophobic and Hydrophilic Interactions
2.
J Chem Phys ; 159(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37655772

ABSTRACT

DNA deformability and differential hydration are crucial determinants of biological processes ranging from genetic material packaging to gene expression; their associative details, however, remain inadequately understood. Herein, we report investigations of the dynamic and thermodynamic responses of the local hydration of a variety of base pair sequences. Leveraging in silico sampling and our in-house analyses, we first report the local conformational propensity of sequences that are either predisposed toward the canonical A- or B-conformations or are restrained to potential transitory pathways. It is observed that the transition from the unrestrained A-form to the B-form leads to lengthwise structural deformation. The insertion of intermittent -(CG)- base pairs in otherwise homogeneous -(AT)- sequences bears dynamical consequences for the vicinal hydration layer. Calculation of the excess (pair) entropy suggests substantially higher values of hydration water surrounding A conformations over the B- conformations. Applying the Rosenfeld approximation, we project that the diffusivity of water molecules proximal to canonical B conformation is least for the minor groove of the canonical B-conformation. We determine that structure, composition, and conformation specific groove dimension together influence the local hydration characteristics and, therefore, are expected to be important determinants of biological processes.

3.
Comput Biol Chem ; 102: 107806, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608615

ABSTRACT

Indoor propagation of airborne diseases is yet poorly understood. Here, we theoretically study a microscopic model based on the motions of virus particles in a respiratory microdroplet, responsible for airborne transmission of diseases, to understand their indoor propagation. The virus particles are driven by a driving force that mimics force due to gushing of air by devices like indoor air conditioning along with the gravity. A viral particle within the droplet experiences viscous drag due to the droplet medium, force due to interfacial tension at the droplet boundary, the thermal forces and mutual interaction forces with the other viral particles. We use Brownian Dynamics (BD) simulations and scaling arguments to study the motion of the droplet, given by that of the center of mass of the viral assembly. The BD simulations show that in presence of the gravity force alone, the time the droplet takes to reach the ground level, defined by the gravitational potential energy being zero, from a vertical height H,tf∼γ-0.1 dependence, where γ is the interfacial tension. In presence of the driving force of magnitude F0 and duration τ0, the horizontal propagation length, Ymax from the source increase linearly with τ0, where the slope is steeper for larger F0. Our scaling analysis explains qualitatively well the simulation observations and show long-distance transmission of airborne respiratory droplets in the indoor conditions due to F0 ∼ nano-dyne.


Subject(s)
Respiratory Aerosols and Droplets , Computer Simulation
4.
RSC Adv ; 12(49): 32129-32141, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36415558

ABSTRACT

Lamins maintain the shape and rigidity of the nucleus in the form of a proteinaceous scaffold underneath the inner nuclear membrane (INM) and provide anchorage to chromatin and other nuclear proteins. Mutations in the human LMNA gene encoding lamin A/C cause about 16 different diseases with distinct phenotypes collectively termed as laminopathies which affect primarily the muscle tissues as well as adipose tissues, neuromuscular junctions and multiple other organs in progeroid syndromes. Lamins contain several domains of which Ig-fold is one of the well characterized and structured domains that harbours many mutations leading to deleterious interactions with other nuclear proteins. In this work, we have elucidated the effects of 3 such mutations namely R453W, W498C and W498R on the dynamics and flexibility of the Ig-fold domain and the consequent effect on the assembly into lamina by live cell imaging, fluorescence correlation spectroscopy (FCS) and molecular dynamics (MD) simulations. From our simulation studies, we concluded that R453W exhibits the highest fluctuation at the residues 475 and 525 in the Ig fold domain compared to the wild type and other mutants. This resulted in pronounced random self-association which could be corroborated by lower diffusivity values obtained from FCS. This is the first report where such an alteration in the full length has been documented by gross changes in diffusional properties as a sequel to a mutation in the Ig fold domain.

5.
Bioinformatics ; 38(15): 3833-3834, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35695777

ABSTRACT

MOTIVATION: The role of metals in shaping and functioning of RNA is a well-established fact, and the understanding of that through the analysis of structural data has biological relevance. Often metal ions bind to one or more atoms of the nucleobase of an RNA. This fact becomes more interesting when such bases form a base pair with any other base. Furthermore, when metal ions bind to any residue of an RNA, the secondary structural features of the residue (helix, loop, unpaired, etc.) are also biologically important. The available metal-binding-related software tools cannot address such type-specific queries. RESULTS: To fill this limitation, we have designed a software tool, called MetBP that meets the goal. This tool is a stand-alone command-line-based tool and has no dependency on the other existing software. It accepts a structure file in mmCIF or PDB format and computes the base pairs and thereafter reports all metals that bind to one or more nucleotides that form pairs with another. It reports binding distance, angles along with base pair stability. It also reports several other important aspects, e.g. secondary structure of the residue in the RNA. MetBP can be used as a generalized metal-binding site detection tool for Proteins and DNA as well. AVAILABILITY AND IMPLEMENTATION: https://github.com/computational-biology/metbp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA , Software , Base Pairing , RNA/chemistry , Protein Structure, Secondary , Metals , Ions
6.
Interdiscip Sci ; 14(3): 759-774, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35705797

ABSTRACT

The stable three-dimensional structure of RNA is known to play several important biochemical roles, from post-transcriptional gene regulation to enzymatic action. These structures contain double-helical regions, which often have different types of non-canonical base pairs in addition to Watson-Crick base pairs. Hence, it is important to study their structures from experimentally obtained or even predicted ones, to understand their role, or to develop a drug against the potential targets. Molecular Modeling of RNA double helices containing non-canonical base pairs is a difficult process, particularly due to the unavailability of structural features of non-Watson-Crick base pairs. Here we show a composite web-server with an associated database that allows one to generate the structure of RNA double helix containing non-canonical base pairs using consensus parameters obtained from the database. The database classification is followed by an evaluation of the central tendency of the structural parameters as well as a quantitative estimation of interaction strengths. These parameters are used to construct three-dimensional structures of double helices composed of Watson-Crick and/or non-canonical base pairs. Our benchmark study to regenerate double-helical fragments of many experimentally derived RNA structures indicate very high accuracy. This composite server is expected to be highly useful in understanding functions of various pre-miRNA by modeling structures of the molecules and estimating binding efficiency. The database can be accessed from http://hdrnas.saha.ac.in/rnabpdb .


Subject(s)
MicroRNAs , Base Pairing , Hydrogen Bonding , Models, Molecular , Molecular Structure , Nucleic Acid Conformation
7.
Biopolymers ; 113(7): e23492, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35615897

ABSTRACT

Specific recognition of DNA base sequences by proteins is vital for life-cycles of all organisms. In a large number of crystal structures of protein-DNA complexes, DNA conformation significantly deviates from the canonical B-DNA structure. A key question is whether such alternate conformations exist prior to protein binding and one is selected for complexation or the structure observed is induced by protein binding. Non-canonical base pairs, such as Hoogsteen base pairs, are often observed in crystal structures of protein-DNA complexes. We decided to explore whether the occurrence of such non-canonical base pairs in protein-DNA complexes is induced by the protein or is selected from pre-existing conformations. Detailed quantum chemical calculations with dispersion-corrected density functional theory (DFT-D) indicated that most of the non-canonical base pairs with DNA bases are stable even in the absence of the interacting amino acids. However, the G:G Hoogsteen base pair, which also appears in the telomere structure, appears to be unstable in the absence of other stabilizing agents, such as positively charged amino acids. Thus, the stability of many of the non-canonical base pair containing duplexes may be close to the canonical B-DNA structure and hence energetically accessible in the ground state; suggesting that the selection from pre-existing conformations may be an important mechanism for observed non-canonical base pairs in protein-DNA complexes.


Subject(s)
DNA, B-Form , Amino Acids , Base Pairing , DNA/chemistry , Hydrogen Bonding , Nucleic Acid Conformation
8.
Proteins ; 90(7): 1390-1412, 2022 07.
Article in English | MEDLINE | ID: mdl-35157344

ABSTRACT

According to the "jigsaw puzzle" model of protein folding, the isomorphism between sequence and structure is substantially determined by the specific geometry of side-chain interactions, within the protein interior. In this work, we have attempted to predict the hydrophobic core of cyclophilin (LdCyp) from Leishmania donovani, utilizing a surface complementarity function, which selects for high goodness of fit between hydrophobic side-chain surfaces, rather in the manner of assembling a three-dimensional jigsaw puzzle. The computational core prediction method implemented here has been tried on two distinct scenarios, on the LdCyp polypeptide chain with native non-core residues and all core residues initially set to alanine, on a poly-glycine polypeptide chain. Molecular dynamics simulations appeared to indicate partial destabilization of the two designed sequences. However, experimental characterization of the designed sequences by circular dichroism (CD) spectroscopy and denaturant (GdmCl) induced unfolding, demonstrated disordered proteins. Stepwise reconstruction of the designed cores by cumulative sequential mutations identified the specific mutation (M122L) as primarily responsible for fold collapse and all design objectives were achieved upon rectifying this mutation. In summary, the study demonstrates regions of the core to contain highly specific (jigsaw puzzle-like) interactions sensitive to any perturbations and a predictive algorithm to identify such regions. A mutation within the core has been identified which exercises an inordinate influence on the global fold, reminiscent of metamorphic proteins. In addition, the computational procedure could predict substantial regions of the core (given main-chain coordinates) without any reference to non-core residues.


Subject(s)
Protein Folding , Proteins , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Peptides
9.
J Comput Aided Mol Des ; 36(2): 131-140, 2022 02.
Article in English | MEDLINE | ID: mdl-35059942

ABSTRACT

Base pairing in RNA are significantly rich and versatile due to the potential non-canonical base pairing amongst nucleotides. Not only that, one base in RNA can pair with more than one bases simultaneously. This opens up a new dimension of research to detect such types of base-base pair networks in RNA and to analyze them. Even if a base do not form a pair, it may have significant extent of [Formula: see text]-[Formula: see text] stacking overlap that can stabilize the structures. In this work, we report a software tool, called BPNet, that accepts a mmCIF or PDB file and computes the base-pair/[Formula: see text]-[Formula: see text] contact network components using graph formalism. The software can run on Linux platform in both serial and parallel modes. It generates several information in suitable file formats for visualization of the networks. This paper describes the BPNet software and also presents some interesting results obtained by analyzing several RNA structures by the software to show its effectiveness.


Subject(s)
Computational Biology , RNA , Base Pairing , Hydrogen Bonding , Nucleic Acid Conformation , RNA/chemistry
10.
J Biomol Struct Dyn ; 40(24): 13682-13692, 2022.
Article in English | MEDLINE | ID: mdl-34726123

ABSTRACT

RNA interference, particularly siRNA induced gene silencing is becoming an important avenue of modern therapeutics. The siRNA is delivered to the cells as short double helical RNA which becomes single stranded for forming the RISC complex. Significant experimental evidence is available for most of the steps except the process of the separation of the two strands. We have attempted to understand the pathway for double stranded siRNA (dsRNA) to single stranded (ssRNA) molecules using steered molecular dynamics simulations. As the process is completely unexplored we have applied force from all possible directions restraining all possible residues to convert dsRNA to ssRNA. We found pulling one strand along the helical axis direction restraining the far end of the other strand demands excessive force for ssRNA formation. Pulling a central residue of one strand, in a direction perpendicular to the helix axis, while keeping the base paired residue fixed requires intermediate force for strand separation. Moreover, we found that in this process the force requirement is quite high for the first bubble formation (nucleation energy) and the bubble propagation energies are quite small. We believe the success rate of the design of siRNA sequences for gene silencing may increase if this mechanistic knowledge is utilized for such a design process.Communicated by Ramaswamy H. Sarma.


Subject(s)
Molecular Dynamics Simulation , RNA, Double-Stranded , RNA, Small Interfering/chemistry , RNA, Double-Stranded/genetics , RNA Interference
11.
J Mol Model ; 27(6): 191, 2021 May 31.
Article in English | MEDLINE | ID: mdl-34057647

ABSTRACT

COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike-ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently "reaction-prone." The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic "hydrophobic ↔ polar" mutations serve as a potential breakthrough.


Subject(s)
SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites/physiology , COVID-19/metabolism , COVID-19/transmission , COVID-19/virology , Humans , Lung/metabolism , Lung/virology , Protein Binding/physiology , Virus Internalization
12.
J Mol Graph Model ; 101: 107722, 2020 12.
Article in English | MEDLINE | ID: mdl-32882634

ABSTRACT

It had been observed that in some DNA-binding proteins, hydrophobic amino acid side-chains intercalate between two base pairs of the DNA, often leading to curvature or kink. Some of these proteins pre-dominantly interact through the minor groove and are often described as not having strong sequence preference. In contrast, lac-repressor binds to DNA with strong sequence specificity, also interacts with the minor groove of its operator by partially intercalating two Leucine side-chains between two CG base pairs, in addition to its interaction with the major groove base atoms. The role of this interaction in the operator recognition has not been fully elucidated. We have done extensive quantum chemical calculations, from molecular dynamics derived snapshots, using dispersion-corrected density functional theory to show that this unstacking is energetically slightly unfavorable. However, among all the base-amino acid pairs studied, the CG/CG-Leucine pair, the natural sequence, is among the most stable ones. The bending of the DNA resulting from this intercalation is important for aligning the major dimeric protein and the DNA interfaces. Thus, the sacrifice of modest binding energy enhances the sequence-specificity. Given many prokaryotic repressors belong to the lac repressor family, this could be a general mechanism for augmenting sequence specificity.


Subject(s)
DNA , Molecular Dynamics Simulation , Base Pairing , Base Sequence , Nucleic Acid Conformation
13.
Biochim Biophys Acta Gen Subj ; 1864(7): 129600, 2020 07.
Article in English | MEDLINE | ID: mdl-32179130

ABSTRACT

BACKGROUND: Molecular modeling of RNA double helices is possible using most probable values of basepair parameters obtained from crystal structure database. The A:A w:wC non-canonical basepair, involving Watson-Crick edges of two Adenines in cis orientation, appears quite frequently in database. Bimodal distribution of its Shear, due to two different H-bonding schemes, introduces the confusion in assigning most the probable value. Its effect is pronounced when the A:A w:wC basepair stacks on Sheared wobble G:U W:WC basepairs. METHODS: We employed molecular dynamics simulations of three possible double helices with GAG, UAG and GAU sequence motifs at their centers and quantum chemical calculation for non-canonical A:A w:wC basepair stacked on G:U W:WC basepair. RESULTS: We noticed stable structures of GAG motif with specifically negative Shear of the A:A basepair but stabilities of the other motifs were not found with A:A w:wC basepairing. Hybrid DFT-D and MP2 stacking energy analyses on dinucleotide step sequences, A:A w:wC::G:U W:WC and A:A w:wC::U:G W:WC reveal that viable orientation of A:A::G:U prefers one of the H-bonding modes with negative Shear, supported by crystal structure database. The A:A::U:G dinucleotide, however, prefers structure with only positive Shear. CONCLUSIONS: The quantum chemical calculations explain why MD simulations of GAG sequence motif only appear stable. In the cases of the GAU and UAG motifs "tug of war" situation between positive and negative Shears of A:A w:wC basepair induces conformational plasticity. GENERAL SIGNIFICANCE: We have projected comprehensive reason behind the promiscuous nature of A:A w:wC basepair which brings occasional structural plasticity.


Subject(s)
Base Pairing/genetics , Computational Biology , Computational Chemistry , RNA/ultrastructure , Adenine/metabolism , Crystallography, X-Ray , Dinucleoside Phosphates/genetics , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure , Nucleic Acid Conformation , RNA/genetics
14.
J Comput Aided Mol Des ; 34(1): 83-95, 2020 01.
Article in English | MEDLINE | ID: mdl-31820194

ABSTRACT

DNA is an essential target for the treatment of various pathologies, especially cancer. Hence targeting DNA double helix for alteration of its function has been attempted by several ways. Drug-DNA intercalation, one such biophysical process, could not be studied extensively as this requires significant deformation of the receptor DNA. Here we report thorough theoretical investigation of intercalation process in daunomycin-DNA interaction, by performing molecular dynamics simulations of the drug-DNA complexes for various DNA sequences, followed by Free-energy analysis and density functional theory (DFT) based studies to understand the binding preference. The classical energy based analyses indicate that the drug prefers to bind to TC/GA sequence over others. The DFT based energies of supra-molecular complexes are always contaminated with basis set superposition error (BSSE), which can be corrected by counterpoise method. This method is quite effective for systems containing two molecular fragments but is not appropriate for studying interaction between two base pair fragments and the drug intercalated between them. We have adopted an extension of the counterpoise method for BSSE corrected interaction energy calculation. These interaction energies, along with the energy penalty due to un-stacking of the base pairs, also indicate TC/GA sequence is the most preferred sequence for binding.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , DNA/chemistry , Daunorubicin/pharmacology , Intercalating Agents/pharmacology , Density Functional Theory , Molecular Dynamics Simulation , Nucleic Acid Conformation/drug effects , Thermodynamics
15.
Phys Chem Chem Phys ; 21(38): 21549-21560, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31536074

ABSTRACT

Repetitive cytosine rich i-motif forming sequences are abundant in the telomere, centromere and promoters of several oncogenes and in some instances are known to regulate transcription and gene expression. The in vivo existence of i-motif structures demands further insight into the factors affecting their formation and stability and development of better understanding of their gene regulatory functions. Most prior studies characterizing the conformational dynamics of i-motifs are based on i-motif forming synthetic constructs. Here, we present a systematic study on the stability and structural properties of biologically relevant i-motifs of telomeric and centromeric repeat fragments. Our results based on molecular dynamics simulations and quantum chemical calculations indicate that along with base pairing interactions within the i-motif core the overall folded conformation is associated with the stable C-HO sugar "zippers" in the narrow grooves and structured water molecules along the wide grooves. The stacked geometry of the hemi-protonated cytosine pairs within the i-motif core is mainly governed by the repulsive base stacking interaction. The loop sequence can affect the structural dynamics of the i-motif by altering the loop motion and backbone conformation. Overall this study provides microscopic insight into the i-motif structure that will be helpful to understand the structural aspect of mechanisms of gene regulation by i-motif DNA.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Nucleotide Motifs , Solvents/chemistry , Telomere/chemistry , Base Pairing , Cytosine/chemistry , Hydrogen Bonding , Molecular Dynamics Simulation
16.
ACS Omega ; 4(4): 7354-7368, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459834

ABSTRACT

Noncoding RNA molecules are composed of a large variety of noncanonical base pairs that shape up their functionally competent folded structures. Each base pair is composed of at least two interbase hydrogen bonds (H-bonds). It is expected that the characteristic geometry and stability of different noncanonical base pairs are determined collectively by the properties of these interbase H-bonds. We have studied the ground-state electronic properties [using density functional theory (DFT) and DFT-D3-based methods] of all the 118 normal base pairs and 36 modified base pairs, belonging to 12 different geometric families (cis and trans of WW, WH, HH, WS, HS, and SS) that occur in a nonredundant set of high-resolution RNA crystal structures. Having addressed some of the limitations of the earlier approaches, we provide here a comprehensive compilation of the average energies of different types of interbase H-bonds (E HB). We have also characterized each interbase H-bond using 13 different parameters that describe its geometry, charge distribution at its bond critical point (BCP), and n → σ*-type charge transfer from filled π orbitals of the H-bond acceptor to the empty antibonding orbital of the H-bond donor. On the basis of the extent of their linear correlation with the H-bonding energy, we have shortlisted five parameters to model linear equations for predicting E HB values. They are (i) electron density at the BCP: ρ, (ii) its Laplacian: ∇2ρ, (iii) stabilization energy due to n → σ*-type charge transfer: E(2), (iv) donor-hydrogen distance, and (v) hydrogen-acceptor distance. We have performed single variable and multivariable linear regression analysis over the normal base pairs and have modeled sets of linear relationships between these five parameters and E HB. Performance testing of our model over the set of modified base pairs shows promising results, at least for the moderately strong H-bonds.

17.
RNA ; 25(5): 573-589, 2019 05.
Article in English | MEDLINE | ID: mdl-30792229

ABSTRACT

Identification and characterization of base-multiplets, which are essentially mediated by base-pairing interactions, can provide insights into the diversity in the structure and dynamics of complex functional RNAs, and thus facilitate hypothesis driven biological research. The necessary nomenclature scheme, an extension of the geometric classification scheme for base-pairs by Leontis and Westhof, is however available only for base-triplets. In the absence of information on topology, this scheme is not applicable to quartets and higher order multiplets. Here we propose a topology-based classification scheme which, in conjunction with a graph-based algorithm, can be used for the automated identification and characterization of higher order base-multiplets in RNA structures. Here, the RNA structure is represented as a graph, where nodes represent nucleotides and edges represent base-pairing connectivity. Sets of connected components (of n nodes) within these graphs constitute subgraphs representing multiplets of "n" nucleotides. The different topological variants of the RNA multiplets thus correspond to different nonisomorphic forms of these subgraphs. To annotate RNA base-multiplets unambiguously, we propose a set of topology-based nomenclature rules for quartets, which are extendable to higher multiplets. We also demonstrate the utility of our approach toward the identification and annotation of higher order RNA multiplets, by investigating the occurrence contexts of selected examples in order to gain insights regarding their probable functional roles.


Subject(s)
Algorithms , Nucleic Acid Conformation , Nucleotides/chemistry , RNA, Bacterial/chemistry , RNA, Fungal/chemistry , Base Pairing , Computational Biology/methods , Hydrogen Bonding , Nucleotides/genetics , Nucleotides/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/metabolism , RNA, Fungal/genetics , RNA, Fungal/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Software , Thermus thermophilus/genetics , Thermus thermophilus/metabolism
18.
ACS Omega ; 4(1): 699-709, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30775644

ABSTRACT

Charged nucleobases have been found to occur in several known RNA molecules and are considered essential for their structure and function. The mechanism of their involvement is however not yet fully understood. Revelation of the role of N7-protonated guanine, in modulating the geometry and stability of noncanonical base pairs formed through its unprotonated edges [Watson-Crick (WC) and sugar], has triggered the need to evaluate the feasibility of similar roles of other protonated nucleobases [Halder et al., Phys Chem Chem Phys, 2015, 17, 26249]. In this context, N3 protonation of guanine makes an interesting case as its influence on the charge distribution of the WC edge is similar to that of N7 protonation, though its thermodynamic cost of protonation is significantly higher. In this work, we have carried out structural bioinformatics analyses and quantum mechanics-based calculations to show that N3 protonation of guanine may take place in a cellular environment, at least in the G:C W:W Trans and G:G W:H Cis base pairs. Our results provide a reasonable starting point for future investigations in order to address the larger mechanistic question.

19.
J Biomol Struct Dyn ; 37(12): 3065-3080, 2019 08.
Article in English | MEDLINE | ID: mdl-30608219

ABSTRACT

The γ-amino butyric acid type A receptors (GABAA-Rs) are GABA-gated chloride ion channels that mediate fast inhibitory neurotransmissions. Due to their essential role in normal brain function, neuromodulatory therapies are targeted at them for restoring GABA-mediated inhibition. The receptor modulation by benzodiazepine (BZD) shows therapeutically useful actions. The mechanisms, by which BZD-site performs selective transduction while modulating GABAA-Rs, and its correlation with the occurrence of sedation is not fully known. In pursuance, we performed a computational study starting from modeling of α2-subtype GABAA-R, docking of α1/2-selective ligands followed by molecular dynamics simulations of the obtained complexes. The results show that during early stages of activation, a) allosteric binding initiate structural changes through BZD-site for GABA-elicited activation; b) selective BZD-binders positively modulate orthosteric GABA-bound site with fin-like C- and F-loop movements, which supports twisting of inner and outer ß-barrel; c) modulation by α1/2-selective ligands was only evident at site 1, mimicking mandatory doubly bound state; d) strength of allosteric communication was prominent for α2-modulators, however, the basic nature of allosteric-orthosteric site cross-talk remains same for both α1/2-modulators; and e) ratio of hydrophobic:hydrophilic ligand contact surface decides α2-selectivity, less value of ratio favors it. These insights would enable us to design better α2-selective modulator/s. Altogether our computational study reveals early stages of allosteric modulation, highlighting subtype selective activation and pathways recommending GABA binding sites during selective modulation. Communicated by Ramaswamy H. Sarma.


Subject(s)
Allosteric Regulation/physiology , Allosteric Site/physiology , Binding Sites/physiology , Protein Binding/physiology , Receptors, GABA/metabolism , Benzodiazepines/metabolism , Humans , Ligands , Molecular Dynamics Simulation , Protein Subunits/metabolism , Receptors, GABA-A/metabolism , Structure-Activity Relationship
20.
ACS Appl Mater Interfaces ; 11(5): 4719-4736, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30628773

ABSTRACT

Cytosolic delivery of functional siRNA remains the major challenge to develop siRNA-based therapeutics. Designing clinically safe and effective siRNA transporter to deliver functional siRNA across the plasma and endosomal membrane remains a key hurdle. With the aim of improving endosomal release, we have designed cyclic and linear peptide-based transporters having an Arg-DHis-Arg template. Computational studies show that the Arg-DHis-Arg template is also stabilized by the Arg-His side-chain hydrogen bonding interaction at physiological pH, which dissociates at lower pH. The overall atomistic interactions were examined by molecular dynamics simulations, which indicate that the extent of peptide_siRNA assembly formation depends greatly on physicochemical properties of the peptides. Our designed peptides having the Arg-DHis-Arg template and two lipidic moieties facilitate high yield of intracellular delivery of siRNA. Additionally, unsaturated lipid, linoleic acid moieties were introduced to promote fusogenicity and facilitate endosomal release and cytosolic delivery. Interestingly, such protease-resistant peptides provide serum stability to siRNA and exhibit high efficacy of erk1 and erk2 gene silencing in the triple negative breast cancer (TNBC) cell line. The peptide having two linoleyl moieties demonstrated comparable efficacy with commercial transfection reagent HiPerFect, as evidenced by the erk1 and erk2 gene knockdown experiment. Additionally, our study shows that ERK1/2 silencing siRNA and doxorubicin-loaded gramicidin-mediated combination therapy is more effective than siRNA-mediated gene silencing-based monotherapy for TNBC treatment.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Cell-Penetrating Peptides/pharmacokinetics , Drug Delivery Systems/methods , Lipopeptides/pharmacokinetics , RNA, Small Interfering/pharmacokinetics , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell-Penetrating Peptides/chemical synthesis , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacology , Humans , Lipopeptides/chemical synthesis , Lipopeptides/chemistry , Lipopeptides/pharmacology , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...