Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 58: 102529, 2022 12.
Article in English | MEDLINE | ID: mdl-36375380

ABSTRACT

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Mice , Animals , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Triple Negative Breast Neoplasms/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , CD8-Positive T-Lymphocytes/metabolism , Orientation, Spatial , Immunotherapy , Disease Progression , Lymphocytes/metabolism , Indomethacin/pharmacology , Indomethacin/metabolism , Indomethacin/therapeutic use
2.
Int J Mol Sci ; 22(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209132

ABSTRACT

The metabolic requirements and functions of cancer and normal tissues are vastly different. Due to the rapid growth of cancer cells in the tumor microenvironment, distorted vasculature is commonly observed, which creates harsh environments that require rigorous and constantly evolving cellular adaption. A common hallmark of aggressive and therapeutically resistant tumors is hypoxia and hypoxia-induced stress markers. However, recent studies have identified alterations in a wide spectrum of metabolic pathways that dictate tumor behavior and response to therapy. Accordingly, it is becoming clear that metabolic processes are not uniform throughout the tumor microenvironment. Metabolic processes differ and are cell type specific where various factors promote metabolic heterogeneity within the tumor microenvironment. Furthermore, within the tumor, these metabolically distinct cell types can organize to form cellular neighborhoods that serve to establish a pro-tumor milieu in which distant and spatially distinct cellular neighborhoods can communicate via signaling metabolites from stroma, immune and tumor cells. In this review, we will discuss how biochemical interactions of various metabolic pathways influence cancer and immune microenvironments, as well as associated mechanisms that lead to good or poor clinical outcomes.


Subject(s)
Neoplasms/immunology , Nitric Oxide/immunology , Signal Transduction/immunology , Tumor Microenvironment/immunology , Animals , Humans , Neoplasms/pathology
3.
Front Oncol ; 11: 658489, 2021.
Article in English | MEDLINE | ID: mdl-34055625

ABSTRACT

Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.

4.
Int J Mol Sci ; 21(24)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33321789

ABSTRACT

Nitric oxide (NO) is a key player in both the development and suppression of tumourigenesis depending on the source and concentration of NO. In this review, we discuss the mechanisms by which NO induces DNA damage, influences the DNA damage repair response, and subsequently modulates cell cycle arrest. In some circumstances, NO induces cell cycle arrest and apoptosis protecting against tumourigenesis. NO in other scenarios can cause a delay in cell cycle progression, allowing for aberrant DNA repair that promotes the accumulation of mutations and tumour heterogeneity. Within the tumour microenvironment, low to moderate levels of NO derived from tumour and endothelial cells can activate angiogenesis and epithelial-to-mesenchymal transition, promoting an aggressive phenotype. In contrast, high levels of NO derived from inducible nitric oxide synthase (iNOS) expressing M1 and Th1 polarised macrophages and lymphocytes may exert an anti-tumour effect protecting against cancer. It is important to note that the existing evidence on immunomodulation is mainly based on murine iNOS studies which produce higher fluxes of NO than human iNOS. Finally, we discuss different strategies to target NO related pathways therapeutically. Collectively, we present a picture of NO as a master regulator of cancer development and progression.


Subject(s)
Neoplasms/metabolism , Nitric Oxide/metabolism , Signal Transduction , Animals , Humans , Immunotherapy/methods , Neoplasms/therapy
5.
Int J Cancer ; 142(10): 2056-2067, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29266277

ABSTRACT

Mesenchymal stem cells (MSCs) are a heterogeneous population of multipotent cells that are capable of differentiating into osteocytes, chondrocytes and adipocytes. Recently, MSCs have been found to home to the tumour site and engraft in the tumour stroma. However, it is not yet known whether they have a tumour promoting or suppressive function. We investigated the interaction between prostate cancer cell lines 22Rv1, DU145 and PC3, and bone marrow-derived MSCs. MSCs were 'educated' for extended periods in prostate cancer cell conditioned media and PC3-educated MSCs were found to be the most responsive with a secretory profile rich in pro-inflammatory cytokines. PC3-educated MSCs secreted increased osteopontin (OPN), interleukin-8 (IL-8) and fibroblast growth factor-2 (FGF-2) and decreased soluble fms-like tyrosine kinase-1 (sFlt-1) compared to untreated MSCs. PC3-educated MSCs showed a reduced migration and proliferation capacity that was dependent on exposure to PC3-conditioned medium. Vimentin and α-smooth muscle actin (αSMA) expression was decreased in PC3-educated MSCs compared to untreated MSCs. PC3 and DU145 education of healthy donor and prostate cancer patient-derived MSCs led to a reduced proportion of FAP+ αSMA+ cells contrary to characteristics commonly associated with cancer associated fibroblasts (CAFs). The migration of PC3 cells was increased toward both PC3-educated and DU145-educated MSCs compared to untreated MSCs, while DU145 migration was only enhanced toward patient-derived MSCs. In summary, MSCs developed an altered phenotype in response to prostate cancer conditioned medium which resulted in increased secretion of pro-inflammatory cytokines, modified functional activity and the chemoattraction of prostate cancer cells.


Subject(s)
Cytokines/metabolism , Cytokines/pharmacology , Mesenchymal Stem Cells/drug effects , Prostatic Neoplasms/metabolism , Adult , Cell Line, Tumor , Cell Movement/drug effects , Culture Media, Conditioned , Humans , Male , Mesenchymal Stem Cells/pathology , Middle Aged , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...