Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Microb Sci ; 2: 100041, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841332

ABSTRACT

Microbial fuel cells (MFCs) that generate bioelectricity from biodegradable waste have received considerable attention from biologists. Fungi play a significant role as both anodic and cathodic catalysts in MFCs. Saccharomyces cerevisiae is a fungus with an ability to transfer electrons through mediators such as methylene blue (MB), neutral red (NR) or even without a mediator. This unique role of fungal cells in exocellular electron transfer (EET) and their interactions with electrodes hold a lot of promise in areas such as wastewater treatment where yeast cell-based MFCs can be used. The present article highlights the physico-chemical factors affecting the performance of fungal-mediated MFCs in terms of power output and degradation of organic pollutants, along with the challenges associated with fungal MFCs. In addition, to this comparative assessment of fungal-mediated bio-electrochemical systems, their development, possible applications and potential challenges are also discussed.

2.
World J Microbiol Biotechnol ; 30(2): 519-28, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23990071

ABSTRACT

Soil bacterial communities, which contain the highest level of prokaryotic diversity of any natural environment, are important for ecosystem functioning. A culture-independent metagenomic approach was employed in the present investigation to characterize the diversity of soil bacterial community composition in five geochemically and hydrologically different surface and subsurface soil habitats of Brahmaputra valley, Assam, North-East India, an Indo-Burma mega-biodiversity hotspot. The diversity of soil bacterial community was determined through sequence analysis of 16S-23S intergenic spacer regions (ISR). Polymerase chain reaction (PCR) universal primers, 1406F (5'-TGYACACACCGCCCGT-3') and 155r (5'-GGGTTBCATTCRG-3') were used for amplification of 16S-23S ribosomal DNA intergenic spacers of bacteria. Amplification resulted in an intense array of PCR products approximately ranging in size from 200 to 900 bp. Clear banding patterns were observed in analysed samples using the primer set in combination. A clear change in microbial ISR profile was observed on visual analysis of gel electrophoresis profiles. Fast alignment database searches of PCR amplicons of 16S-23S ISR sequence data revealed that the isolated sequences resembled five major phylogenetic groups of bacteria, namely α-, ß- and γ-subdivisions of Proteobacteria, Acidobacterium and Comamonadaceae.


Subject(s)
Biota , Soil Microbiology , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , India , Phylogeny , Sequence Analysis, DNA
3.
World J Microbiol Biotechnol ; 28(4): 1327-50, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22805914

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.


Subject(s)
Agriculture/methods , Bacteria/metabolism , Plant Development , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...