Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Nanotechnol ; 17(6): 629-636, 2022 06.
Article in English | MEDLINE | ID: mdl-35437322

ABSTRACT

Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm-1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm-2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.


Subject(s)
Chitosan , Electric Conductivity , Hydroxides , Ion Exchange , Membranes, Artificial
2.
JACS Au ; 2(3): 590-600, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35373208

ABSTRACT

As renewable energy is rapidly integrated into the grid, the challenge has become storing intermittent renewable electricity. Technologies including flow batteries and CO2 conversion to dense energy carriers are promising storage options for renewable electricity. To achieve this technological advancement, the development of next generation electrolyte materials that can increase the energy density of flow batteries and combine CO2 capture and conversion is desired. Liquid-like nanoparticle organic hybrid materials (NOHMs) composed of an inorganic core with a tethered polymeric canopy (e.g., polyetheramine (HPE)) have a capability to bind chemical species of interest including CO2 and redox-active species. In this study, the unique response of NOHM-I-HPE-based electrolytes to salt addition was investigated, including the effects on solution viscosity and structural configurations of the polymeric canopy, impacting transport behaviors. The addition of 0.1 M NaCl drastically lowered the viscosity of NOHM-based electrolytes by up to 90%, reduced the hydrodynamic diameter of NOHM-I-HPE, and increased its self-diffusion coefficient, while the ionic strength did not alter the behaviors of untethered HPE. This study is the first to fundamentally discern the changes in polymer configurations of NOHMs induced by salt addition and provides a comprehensive understanding of the effect of ionic stimulus on their bulk transport properties and local dynamics. These insights could be ultimately employed to tailor transport properties for a range of electrochemical applications.

4.
Nat Commun ; 13(1): 219, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35017478

ABSTRACT

Deep eutectic solvents (DESs) are an emerging class of non-aqueous solvents that are potentially scalable, easy to prepare and functionalize for many applications ranging from biomass processing to energy storage technologies. Predictive understanding of the fundamental correlations between local structure and macroscopic properties is needed to exploit the large design space and tunability of DESs for specific applications. Here, we employ a range of computational and experimental techniques that span length-scales from molecular to macroscopic and timescales from picoseconds to seconds to study the evolution of structure and dynamics in model DESs, namely Glyceline and Ethaline, starting from the parent compounds. We show that systematic addition of choline chloride leads to microscopic heterogeneities that alter the primary structural relaxation in glycerol and ethylene glycol and result in new dynamic modes that are strongly correlated to the macroscopic properties of the DES formed.

5.
J Phys Chem B ; 126(4): 890-905, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35076242

ABSTRACT

The dynamics of the organic components of the deep eutectic solvent (DES) glyceline are analyzed using an array of complementary nuclear magnetic resonance (NMR) methods. Fast-field cycling 1H relaxometry, pulsed field gradient diffusion, nuclear overhauser effect spectroscopy (NOESY), 13C NMR relaxation, and pressure-dependent NMR experiments are deployed to sample a range of frequencies and modes of motion of the glycerol and choline components of the DES. Generally, translational and rotational diffusion of glycerol are more rapid than those of choline while short-range rotational motions observed from 13C relaxation indicate slow local motion of glycerol at low choline chloride (ChCl) content. The rates of glycerol and choline local motions become more similar at higher ChCl. This result taken together with pressure-dependent NMR studies show that the addition of ChCl makes it easier to disrupt glycerol packing. Finally, a relatively slow hydroxyl H-exchange process between glycerol and choline protons is deduced from the data. Consistent with this, NOESY results indicate relatively little direct H-bonding between glycerol and choline. These results suggest that the glycerol H-bonding network is disrupted as choline is added, but primarily in regions where there is intimate mixing of the two components. Thus, the local dynamics of most of the glycerol resembles that of pure glycerol until substantial choline chloride is present.


Subject(s)
Choline , Glycerol , Choline/chemistry , Diffusion , Glycerol/chemistry , Magnetic Resonance Spectroscopy , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...