Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562901

ABSTRACT

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by DSM-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing and shallow shotgun sequencing were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and NeuroMAP CoBRE cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. The findings suggest that future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments are needed.

2.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38633777

ABSTRACT

Metabolomics provides powerful tools that can inform about heterogeneity in disease and response to treatments. In this study, we employed an electrochemistry-based targeted metabolomics platform to assess the metabolic effects of three randomly-assigned treatments: escitalopram, duloxetine, and Cognitive Behavior Therapy (CBT) in 163 treatment-naïve outpatients with major depressive disorder. Serum samples from baseline and 12 weeks post-treatment were analyzed using targeted liquid chromatography-electrochemistry for metabolites related to tryptophan, tyrosine metabolism and related pathways. Changes in metabolite concentrations related to each treatment arm were identified and compared to define metabolic signatures of exposure. In addition, association between metabolites and depressive symptom severity (assessed with the 17-item Hamilton Rating Scale for Depression [HRSD17]) and anxiety symptom severity (assessed with the 14-item Hamilton Rating Scale for Anxiety [HRSA14]) were evaluated, both at baseline and after 12 weeks of treatment. Significant reductions in serum serotonin level and increases in tryptophan-derived indoles that are gut bacterially derived were observed with escitalopram and duloxetine arms but not in CBT arm. These include indole-3-propionic acid (I3PA), indole-3-lactic acid (I3LA) and Indoxyl sulfate (IS), a uremic toxin. Purine-related metabolites were decreased across all arms. Different metabolites correlated with improved symptoms in the different treatment arms revealing potentially different mechanisms between response to antidepressant medications and to CBT.

3.
medRxiv ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38405847

ABSTRACT

Background: Acylcarnitines (ACs) are involved in bioenergetics processes that may play a role in the pathophysiology of depression. Studies linking AC levels to depression are few and provide mixed findings. We examined the association of circulating ACs levels with Major Depressive Disorder (MDD) diagnosis, overall depression severity and specific symptom profiles. Methods: The sample from the Netherlands Study of Depression and Anxiety included participants with current (n=1035) or remitted (n=739) MDD and healthy controls (n=800). Plasma levels of four ACs (short-chain: acetylcarnitine C2 and propionylcarnitine C3; medium-chain: octanoylcarnitine C8 and decanoylcarnitine C10) were measured. Overall depression severity as well as atypical/energy-related (AES), anhedonic and melancholic symptom profiles were derived from the Inventory of Depressive Symptomatology. Results: As compared to healthy controls, subjects with current or remitted MDD presented similarly lower mean C2 levels (Cohen's d=0.2, p≤1e-4). Higher overall depression severity was significantly associated with higher C3 levels (ß=0.06, SE=0.02, p=1.21e-3). No associations were found for C8 and C10. Focusing on symptom profiles, only higher AES scores were linked to lower C2 (ß=-0.05, SE=0.02, p=1.85e-2) and higher C3 (ß=0.08, SE=0.02, p=3.41e-5) levels. Results were confirmed in analyses pooling data with an additional internal replication sample from the same subjects measured at 6-year follow-up (totaling 4195 observations). Conclusions: Small alterations in levels of short-chain acylcarnitine levels were related to the presence and severity of depression, especially for symptoms reflecting altered energy homeostasis. Cellular metabolic dysfunctions may represent a key pathway in depression pathophysiology potentially accessible through AC metabolism.

4.
Stud Health Technol Inform ; 302: 217-221, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203650

ABSTRACT

Social determinants of health (SDOH) impact 80% of health outcomes from acute to chronic disorders, and attempts are underway to provide these data elements to clinicians. It is, however, difficult to collect SDOH data through (1) surveys, which provide inconsistent and incomplete data, or (2) aggregates at the neighborhood level. Data from these sources is not sufficiently accurate, complete, and up-to-date. To demonstrate this, we have compared the Area Deprivation Index (ADI) to purchased commercial consumer data at the individual-household level. The ADI is composed of income, education, employment, and housing quality information. Although this index does a good job of representing populations, it is not adequate to describe individuals, especially in a healthcare context. Aggregate measures are, by definition, not sufficiently granular to describe each individual within the population they represent and may result in biased or imprecise data when simply assigned to the individual. Moreover, this problem is generalizable to any community-level element, not just ADI, in so far as they are an aggregate of the individual community members.


Subject(s)
Data Accuracy , Social Determinants of Health , Humans , Residence Characteristics , Employment , Income
5.
Front Neurosci ; 16: 937906, 2022.
Article in English | MEDLINE | ID: mdl-35937867

ABSTRACT

Background: The gut microbiome may play a role in the pathogenesis of neuropsychiatric diseases including major depressive disorder (MDD). Bile acids (BAs) are steroid acids that are synthesized in the liver from cholesterol and further processed by gut-bacterial enzymes, thus requiring both human and gut microbiome enzymatic processes in their metabolism. BAs participate in a range of important host functions such as lipid transport and metabolism, cellular signaling and regulation of energy homeostasis. BAs have recently been implicated in the pathophysiology of Alzheimer's and several other neuropsychiatric diseases, but the biochemical underpinnings of these gut microbiome-linked metabolites in the pathophysiology of depression and anxiety remains largely unknown. Method: Using targeted metabolomics, we profiled primary and secondary BAs in the baseline serum samples of 208 untreated outpatients with MDD. We assessed the relationship of BA concentrations and the severity of depressive and anxiety symptoms as defined by the 17-item Hamilton Depression Rating Scale (HRSD17) and the 14-item Hamilton Anxiety Rating Scale (HRSA-Total), respectively. We also evaluated whether the baseline metabolic profile of BA informs about treatment outcomes. Results: The concentration of the primary BA chenodeoxycholic acid (CDCA) was significantly lower at baseline in both severely depressed (log2 fold difference (LFD) = -0.48; p = 0.021) and highly anxious (LFD = -0.43; p = 0.021) participants compared to participants with less severe symptoms. The gut bacteria-derived secondary BAs produced from CDCA such as lithocholic acid (LCA) and several of its metabolites, and their ratios to primary BAs, were significantly higher in the more anxious participants (LFD's range = [0.23, 1.36]; p's range = [6.85E-6, 1.86E-2]). The interaction analysis of HRSD17 and HRSA-Total suggested that the BA concentration differences were more strongly correlated to the symptoms of anxiety than depression. Significant differences in baseline CDCA (LFD = -0.87, p = 0.0009), isoLCA (LFD = -1.08, p = 0.016) and several BA ratios (LFD's range [0.46, 1.66], p's range [0.0003, 0.049]) differentiated treatment failures from remitters. Conclusion: In patients with MDD, BA profiles representing changes in gut microbiome compositions are associated with higher levels of anxiety and increased probability of first-line treatment failure. If confirmed, these findings suggest the possibility of developing gut microbiome-directed therapies for MDD characterized by gut dysbiosis.

6.
Front Big Data ; 5: 894598, 2022.
Article in English | MEDLINE | ID: mdl-35979428

ABSTRACT

Background: Social and behavioral aspects of our lives significantly impact our health, yet minimal social determinants of health (SDOH) data elements are collected in the healthcare system. Methods: In this proof-of-concept study we developed a repeatable SDOH enrichment and integration process to incorporate dynamically evolving SDOH domain concepts from consumers into clinical data. This process included SDOH mapping, linking compiled consumer data to patient records in Electronic Health Records, data quality analysis and preprocessing, and storage. Results: Consumer compilers data coverage ranged from ~90 to ~54% and the percentage match rate between compilers was between ~21 and 64%. Our preliminary analysis showed that apart from demographic factors, several SDOH factors like home-ownership, marital-status, presence of children, number of members per household, economic stability and education were significantly different between the COVID-19 positive and negative patient groups while estimated family-income and home market-value were not. Conclusion: Our preliminary analysis shows commercial consumer data can be a viable source of SDOH factor at an individual-level for clinical data thus providing a path for clinicians to improve patient treatment and care.

7.
Stud Health Technol Inform ; 294: 701-702, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35612181

ABSTRACT

In this study we examined the correlation of COVID-19 positivity with area deprivation index (ADI), social determinants of health (SDOH) factors based on a consumer and electronic medical record (EMR) data and population density in a patient population from a tertiary healthcare system in Arkansas. COVID-19 positivity was significantly associated with population density, age, race, and household size. Understanding health disparities and SDOH data can add value to health and the creation of trustable AI.


Subject(s)
COVID-19 , COVID-19/epidemiology , Delivery of Health Care , Hospitals, State , Humans , Population Density , Rural Population , Social Determinants of Health
8.
Am J Med Genet A ; 188(8): 2303-2314, 2022 08.
Article in English | MEDLINE | ID: mdl-35451555

ABSTRACT

Obstructive heart defects (OHDs) share common structural lesions in arteries and cardiac valves, accounting for ~25% of all congenital heart defects. OHDs are highly heritable, resulting from interplay among maternal exposures, genetic susceptibilities, and epigenetic phenomena. A genome-wide association study was conducted in National Birth Defects Prevention Study participants (Ndiscovery  = 3978; Nreplication  = 2507), investigating the genetic architecture of OHDs using transmission/disequilibrium tests (TDT) in complete case-parental trios (Ndiscovery_TDT  = 440; Nreplication_TDT  = 275) and case-control analyses separately in infants (Ndiscovery_CCI  = 1635; Nreplication_CCI  = 990) and mothers (case status defined by infant; Ndiscovery_CCM  = 1703; Nreplication_CCM  = 1078). In the TDT analysis, the SLC44A2 single nucleotide polymorphism (SNP) rs2360743 was significantly associated with OHD (pdiscovery  = 4.08 × 10-9 ; preplication  = 2.44 × 10-4 ). A CAPN11 SNP (rs55877192) was suggestively associated with OHD (pdiscovery  = 1.61 × 10-7 ; preplication  = 0.0016). Two other SNPs were suggestively associated (p < 1 × 10-6 ) with OHD in only the discovery sample. In the case-control analyses, no SNPs were genome-wide significant, and, even with relaxed thresholds ( × discovery < 1 × 10-5 and preplication < 0.05), only one SNP (rs188255766) in the infant analysis was associated with OHDs (pdiscovery  = 1.42 × 10-6 ; preplication  = 0.04). Additional SNPs with pdiscovery < 1 × 10-5 were in loci supporting previous findings but did not replicate. Overall, there was modest evidence of an association between rs2360743 and rs55877192 and OHD and some evidence validating previously published findings.


Subject(s)
Genome-Wide Association Study , Heart Defects, Congenital , Case-Control Studies , Female , Genetic Predisposition to Disease , Heart Defects, Congenital/epidemiology , Heart Defects, Congenital/genetics , Humans , Infant , Polymorphism, Single Nucleotide
9.
Article in English | MEDLINE | ID: mdl-35373222

ABSTRACT

Colonoscopy is a screening and diagnostic procedure for detection of colorectal carcinomas with specific quality metrics that monitor and improve adenoma detection rates. These quality metrics are stored in disparate documents i.e., colonoscopy, pathology, and radiology reports. The lack of integrated standardized documentation is impeding colorectal cancer research. Clinical concept extraction using Natural Language Processing (NLP) and Machine Learning (ML) techniques is an alternative to manual data abstraction. Contextual word embedding models such as BERT (Bidirectional Encoder Representations from Transformers) and FLAIR have enhanced performance of NLP tasks. Combining multiple clinically-trained embeddings can improve word representations and boost the performance of the clinical NLP systems. The objective of this study is to extract comprehensive clinical concepts from the consolidated colonoscopy documents using concatenated clinical embeddings. We built high-quality annotated corpora for three report types. BERT and FLAIR embeddings were trained on unlabeled colonoscopy related documents. We built a hybrid Artificial Neural Network (h-ANN) to concatenate and fine-tune BERT and FLAIR embeddings. To extract concepts of interest from three report types, 3 models were initialized from the h-ANN and fine-tuned using the annotated corpora. The models achieved best F1-scores of 91.76%, 92.25%, and 88.55% for colonoscopy, pathology, and radiology reports respectively.

10.
Article in English | MEDLINE | ID: mdl-35386186

ABSTRACT

Clinical named entity recognition (NER) is an essential building block for many downstream natural language processing (NLP) applications such as information extraction and de-identification. Recently, deep learning (DL) methods that utilize word embeddings have become popular in clinical NLP tasks. However, there has been little work on evaluating and combining the word embeddings trained from different domains. The goal of this study is to improve the performance of NER in clinical discharge summaries by developing a DL model that combines different embeddings and investigate the combination of standard and contextual embeddings from the general and clinical domains. We developed: 1) A human-annotated high-quality internal corpus with discharge summaries and 2) A NER model with an input embedding layer that combines different embeddings: standard word embeddings, context-based word embeddings, a character-level word embedding using a convolutional neural network (CNN), and an external knowledge sources along with word features as one-hot vectors. Embedding was followed by bidirectional long short-term memory (Bi-LSTM) and conditional random field (CRF) layers. The proposed model reaches or overcomes state-of-the-art performance on two publicly available data sets and an F1 score of 94.31% on an internal corpus. After incorporating mixed-domain clinically pre-trained contextual embeddings, the F1 score further improved to 95.36% on the internal corpus. This study demonstrated an efficient way of combining different embeddings that will improve the recognition performance aiding the downstream de-identification of clinical notes.

11.
Article in English | MEDLINE | ID: mdl-35300321

ABSTRACT

Colonoscopy plays a critical role in screening of colorectal carcinomas (CC). Unfortunately, the data related to this procedure are stored in disparate documents, colonoscopy, pathology, and radiology reports respectively. The lack of integrated standardized documentation is impeding accurate reporting of quality metrics and clinical and translational research. Natural language processing (NLP) has been used as an alternative to manual data abstraction. Performance of Machine Learning (ML) based NLP solutions is heavily dependent on the accuracy of annotated corpora. Availability of large volume annotated corpora is limited due to data privacy laws and the cost and effort required. In addition, the manual annotation process is error-prone, making the lack of quality annotated corpora the largest bottleneck in deploying ML solutions. The objective of this study is to identify clinical entities critical to colonoscopy quality, and build a high-quality annotated corpus using domain specific taxonomies following standardized annotation guidelines. The annotated corpus can be used to train ML models for a variety of downstream tasks.

12.
Brain Behav Immun ; 102: 42-52, 2022 05.
Article in English | MEDLINE | ID: mdl-35131442

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a highly heterogenous disease, both in terms of clinical profiles and pathobiological alterations. Recently, immunometabolic dysregulations were shown to be correlated with atypical, energy-related symptoms but less so with the Melancholic or Anxious distress symptom dimensions of depression in The Netherlands Study of Depression and Anxiety (NESDA) study. In this study, we aimed to replicate these immunometabolic associations and to characterize the metabolomic correlates of each of the three MDD dimensions. METHODS: Using three clinical rating scales, Melancholic, and Anxious distress, and Immunometabolic (IMD) dimensions were characterized in 158 patients who participated in the Predictors of Remission to Individual and Combined Treatments (PReDICT) study and from whom plasma and serum samples were available. The NESDA-defined inflammatory index, a composite measure of interleukin-6 and C-reactive protein, was measured from pre-treatment plasma samples and a metabolomic profile was defined using serum samples analyzed on three metabolomics platforms targeting fatty acids and complex lipids, amino acids, acylcarnitines, and gut microbiome-derived metabolites among other metabolites of central metabolism. RESULTS: The IMD clinical dimension and the inflammatory index were positively correlated (r = 0.19, p = 0.019) after controlling for age, sex, and body mass index, whereas the Melancholic and Anxious distress dimensions were not, replicating the previous NESDA findings. The three symptom dimensions had distinct metabolomic signatures using both univariate and set enrichment statistics. IMD severity correlated mainly with gut-derived metabolites and a few acylcarnitines and long chain saturated free fatty acids. Melancholia severity was significantly correlated with several phosphatidylcholines, primarily the ether-linked variety, lysophosphatidylcholines, as well as several amino acids. Anxious distress severity correlated with several medium and long chain free fatty acids, both saturated and polyunsaturated ones, sphingomyelins, as well as several amino acids and bile acids. CONCLUSION: The IMD dimension of depression appears reliably associated with markers of inflammation. Metabolomics provides powerful tools to inform about depression heterogeneity and molecular mechanisms related to clinical dimensions in MDD, which include a link to gut microbiome and lipids implicated in membrane structure and function.


Subject(s)
Depressive Disorder, Major , Amino Acids , Depression , Fatty Acids, Nonesterified , Humans , Metabolomics
13.
Sci Rep ; 11(1): 21011, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697401

ABSTRACT

It is unknown whether indoles, metabolites of tryptophan that are derived entirely from bacterial metabolism in the gut, are associated with symptoms of depression and anxiety. Serum samples (baseline, 12 weeks) were drawn from participants (n = 196) randomized to treatment with cognitive behavioral therapy (CBT), escitalopram, or duloxetine for major depressive disorder. Baseline indoxyl sulfate abundance was positively correlated with severity of psychic anxiety and total anxiety and with resting state functional connectivity to a network that processes aversive stimuli (which includes the subcallosal cingulate cortex (SCC-FC), bilateral anterior insula, right anterior midcingulate cortex, and the right premotor areas). The relation between indoxyl sulfate and psychic anxiety was mediated only through the metabolite's effect on the SCC-FC with the premotor area. Baseline indole abundances were unrelated to post-treatment outcome measures, and changes in symptoms were not correlated with changes in indole concentrations. These results suggest that CBT and antidepressant medications relieve anxiety via mechanisms unrelated to modulation of indoles derived from gut microbiota; it remains possible that treatment-related improvement stems from their impact on other aspects of the gut microbiome. A peripheral gut microbiome-derived metabolite was associated with altered neural processing and with psychiatric symptom (anxiety) in humans, which provides further evidence that gut microbiome disruption can contribute to neuropsychiatric disorders that may require different therapeutic approaches. Given the exploratory nature of this study, findings should be replicated in confirmatory studies.Clinical trial NCT00360399 "Predictors of Antidepressant Treatment Response: The Emory CIDAR" https://clinicaltrials.gov/ct2/show/NCT00360399 .


Subject(s)
Anxiety/diagnosis , Anxiety/etiology , Gastrointestinal Microbiome , Indican/adverse effects , Magnetic Resonance Imaging , Uremic Toxins/adverse effects , Adult , Aged , Anxiety/blood , Biomarkers , Brain/diagnostic imaging , Brain/physiopathology , Disease Susceptibility , Female , Functional Neuroimaging/methods , Humans , Indican/biosynthesis , Magnetic Resonance Imaging/methods , Male , Metabolic Networks and Pathways , Metabolome , Metabolomics/methods , Middle Aged , Symptom Assessment , Uremic Toxins/biosynthesis , Young Adult
14.
Stud Health Technol Inform ; 281: 799-803, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042688

ABSTRACT

The ongoing COVID-19 pandemic has become the most impactful pandemic of the past century. The SARS-CoV-2 virus has spread rapidly across the globe affecting and straining global health systems. More than 2 million people have died from COVID-19 (as of 30 January 2021). To lessen the pandemic's impact, advanced methods such as Artificial Intelligence models are proposed to predict mortality, morbidity, disease severity, and other outcomes and sequelae. We performed a rapid scoping literature review to identify the deep learning techniques that have been applied to predict hospital mortality in COVID-19 patients. Our review findings provide insights on the important deep learning models, data types, and features that have been reported in the literature. These summary findings will help scientists build reliable and accurate models for better intervention strategies for predicting mortality in current and future pandemic situations.


Subject(s)
COVID-19 , Deep Learning , Artificial Intelligence , Humans , Pandemics , SARS-CoV-2
15.
Stud Health Technol Inform ; 281: 183-187, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042730

ABSTRACT

Endoscopy procedures are often performed with either moderate or deep sedation. While deep sedation is costly, procedures with moderate sedation are not always well tolerated resulting in patient discomfort, and are often aborted. Due to lack of clear guidelines, the decision to utilize moderate sedation or anesthesia for a procedure is made by the providers, leading to high variability in clinical practice. The objective of this study was to build a Machine Learning (ML) model that predicts if a colonoscopy can be successfully completed with moderate sedation based on patients' demographics, comorbidities, and prescribed medications. XGBoost model was trained and tested on 10,025 colonoscopies (70% - 30%) performed at University of Arkansas for Medical Sciences (UAMS). XGBoost achieved average area under receiver operating characteristic curve (AUC) of 0.762, F1-score to predict procedures that need moderate sedation was 0.85, and precision and recall were 0.81 and 0.89 respectively. The proposed model can be employed as a decision support tool for physicians to bolster their confidence while choosing between moderate sedation and anesthesia for a colonoscopy procedure.


Subject(s)
Anesthesia , Colonoscopy , Conscious Sedation , Humans , Machine Learning
16.
Stud Health Technol Inform ; 281: 427-431, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042779

ABSTRACT

Although colonoscopy is the most frequently performed endoscopic procedure, the lack of standardized reporting is impeding clinical and translational research. Inadequacies in data extraction from the raw, unstructured text in electronic health records (EHR) pose an additional challenge to procedure quality metric reporting, as vital details related to the procedure are stored in disparate documents. Currently, there is no EHR workflow that links these documents to the specific colonoscopy procedure, making the process of data extraction error prone. We hypothesize that extracting comprehensive colonoscopy quality metrics from consolidated procedure documents using computational linguistic techniques, and integrating it with discrete EHR data can improve quality of screening and cancer detection rate. As a first step, we developed an algorithm that links colonoscopy, pathology and imaging documents by analyzing the chronology of various orders placed relative to the colonoscopy procedure. The algorithm was installed and validated at the University of Arkansas for Medical Sciences (UAMS). The proposed algorithm in conjunction with Natural Language Processing (NLP) techniques can overcome current limitations of manual data abstraction.


Subject(s)
Electronic Health Records , Natural Language Processing , Algorithms , Colonoscopy , Workflow
17.
Stud Health Technol Inform ; 281: 432-436, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042780

ABSTRACT

Named Entity Recognition (NER) aims to identify and classify entities into predefined categories is a critical pre-processing task in Natural Language Processing (NLP) pipeline. Readily available off-the-shelf NER algorithms or programs are trained on a general corpus and often need to be retrained when applied on a different domain. The end model's performance depends on the quality of named entities generated by these NER models used in the NLP task. To improve NER model accuracy, researchers build domain-specific corpora for both model training and evaluation. However, in the clinical domain, there is a dearth of training data because of privacy reasons, forcing many studies to use NER models that are trained in the non-clinical domain to generate NER feature-set. Thus, influencing the performance of the downstream NLP tasks like information extraction and de-identification. In this paper, our objective is to create a high quality annotated clinical corpus for training NER models that can be easily generalizable and can be used in a downstream de-identification task to generate named entities feature-set.


Subject(s)
Names , Patient Discharge , Algorithms , Humans , Information Storage and Retrieval , Natural Language Processing
18.
Transl Psychiatry ; 11(1): 153, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33654056

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment. After treatment, we saw increased levels of short-chain acylcarnitines and decreased levels of medium-chain and long-chain acylcarnitines, suggesting an SSRI effect on ß-oxidation and mitochondrial function. Amines-including arginine, proline, and methionine sulfoxide-were upregulated while serotonin and sarcosine were downregulated, suggesting an SSRI effect on urea cycle, one-carbon metabolism, and serotonin uptake. Eighteen lipids within the phosphatidylcholine (PC aa and ae) classes were upregulated. Changes in several lipid and amine levels correlated with changes in 17-item Hamilton Rating Scale for Depression scores (HRSD17). Differences in metabolic profiles at baseline and post-treatment were noted between participants who remitted (HRSD17 ≤ 7) and those who gained no meaningful benefits (<30% reduction in HRSD17). Remitters exhibited (a) higher baseline levels of C3, C5, alpha-aminoadipic acid, sarcosine, and serotonin; and (b) higher week-8 levels of PC aa C34:1, PC aa C34:2, PC aa C36:2, and PC aa C36:4. These findings suggest that mitochondrial energetics-including acylcarnitine metabolism, transport, and its link to ß-oxidation-and lipid membrane remodeling may play roles in SSRI treatment response.


Subject(s)
Depressive Disorder, Major , Amines/therapeutic use , Antidepressive Agents/therapeutic use , Carnitine/analogs & derivatives , Citalopram/therapeutic use , Depression , Depressive Disorder, Major/drug therapy , Humans , Lipids , Selective Serotonin Reuptake Inhibitors/therapeutic use
19.
J Nutr Biochem ; 83: 108397, 2020 09.
Article in English | MEDLINE | ID: mdl-32645610

ABSTRACT

Postnatal dietary modulation of microRNAs (miRNAs) and effects on miRNA-mRNA interactions in tissues remain unknown. This study aimed to investigate whether dietary factors (formula vs. breastfeeding) affect mammary miRNA expression and to determine if these changes are concurrent with developmental alterations of the mammary gland in neonatal piglets. Female Yorkshire/Duroc piglets were fed sow's milk or cow's milk- or soy-based infant formula (from postnatal day 2 to day 21; n=6/group). Differentially expressed miRNAs were determined using mammary miRNA profiling, followed by miRNA and mRNA expressions characterized by quantitative reverse-transcription polymerase chain reaction. Milk and soy formulas reduced expressions of miR-1, -128, -133a, -193b, -206 and -27a; miRNA down-regulation altered mRNA expressions of genes (e.g., Ccnd1, Tgfb3, Igf1r and Tbx3) that were consistent with enhanced cell proliferation and suppressed apoptotic processes in the developing mammary gland. Interestingly, down-regulation of miR-1, -128 and -27a also correlated with increased mRNA genes such as Hmgcs and Hmgcr encoding cholesterol synthesis in the mammary glands in response to lower circulating cholesterol levels. Infant formula feeding affected mammary miRNA profiles in neonatal piglets, concurrent with increased expression of cell proliferation and cholesterol synthesis genes, suggesting early nutritional modulation of miRNAs may contribute to regulation of proliferative status and cholesterol homeostasis of developing mammary glands during infancy.


Subject(s)
Infant Formula , Mammary Glands, Animal , MicroRNAs/genetics , Animal Feed , Animals , Cell Proliferation , Gene Expression Regulation, Developmental , Mammary Glands, Animal/growth & development , Mammary Glands, Animal/metabolism , Models, Animal , Swine , Transcriptome
20.
Neurology ; 94(20): e2088-e2098, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32358220

ABSTRACT

OBJECTIVE: To investigate the association of triglyceride (TG) principal component scores with Alzheimer disease (AD) and the amyloid, tau, neurodegeneration, and cerebrovascular disease (A/T/N/V) biomarkers for AD. METHODS: Serum levels of 84 TG species were measured with untargeted lipid profiling of 689 participants from the Alzheimer's Disease Neuroimaging Initiative cohort, including 190 cognitively normal older adults (CN), 339 with mild cognitive impairment (MCI), and 160 with AD. Principal component analysis with factor rotation was used for dimension reduction of TG species. Differences in principal components between diagnostic groups and associations between principal components and AD biomarkers (including CSF, MRI and [18F]fluorodeoxyglucose-PET) were assessed with a generalized linear model approach. In both cases, the Bonferroni method of adjustment was used to correct for multiple comparisons. RESULTS: The 84 TGs yielded 9 principal components, 2 of which, consisting of long-chain, polyunsaturated fatty acid-containing TGs (PUTGs), were significantly associated with MCI and AD. Lower levels of PUTGs were observed in MCI and AD compared to CN. PUTG principal component scores were also significantly associated with hippocampal volume and entorhinal cortical thickness. In participants carrying the APOE ε4 allele, these principal components were significantly associated with CSF ß-amyloid1-42 values and entorhinal cortical thickness. CONCLUSION: This study shows that PUTG component scores were significantly associated with diagnostic group and AD biomarkers, a finding that was more pronounced in APOE ε4 carriers. Replication in independent larger studies and longitudinal follow-up are warranted.


Subject(s)
Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnosis , Neuroimaging , Triglycerides/blood , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/metabolism , Biomarkers/blood , Cognition/physiology , Cognitive Dysfunction/blood , Cognitive Dysfunction/cerebrospinal fluid , Disease Progression , Female , Hippocampus/metabolism , Humans , Magnetic Resonance Imaging/methods , Male , Neuropsychological Tests , Triglycerides/cerebrospinal fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...