Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
medRxiv ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38699340

ABSTRACT

Given the increasingly large number of loci discovered by psychiatric GWAS, specification of the key biological pathways underlying these loci has become a priority for the field. We have previously leveraged the pleiotropic genetic relationships between schizophrenia and two cognitive phenotypes (educational attainment and cognitive task performance) to differentiate two subsets of illness-relevant SNPs: (1) those with "concordant" alleles, which are associated with reduced cognitive ability/education and increased schizophrenia risk; and (2) those with "discordant" alleles linked to reduced educational and/or cognitive levels but lower schizophrenia susceptibility. In the present study, we extend our prior work, utilizing larger input GWAS datasets and a more powerful statistical approach to pleiotropic meta-analysis, the Pleiotropic Locus Exploration and Interpretation using Optimal test (PLEIO). Our pleiotropic meta-analysis of schizophrenia and the two cognitive phenotypes revealed 768 significant loci (159 novel). Among these, 347 loci harbored concordant SNPs, 270 encompassed discordant SNPs, and 151 "dual" loci contained concordant and discordant SNPs. Competitive gene-set analysis using MAGMA related concordant SNP loci with neurodevelopmental pathways (e.g., neurogenesis), whereas discordant loci were associated with mature neuronal synaptic functions. These distinctions were also observed in BrainSpan analysis of temporal enrichment patterns across developmental periods, with concordant loci containing more prenatally expressed genes than discordant loci. Dual loci were enriched for genes related to mRNA translation initiation, representing a novel finding in the schizophrenia literature.

2.
medRxiv ; 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38293198

ABSTRACT

Background: Research on peripheral (e.g., blood-based) biomarkers for psychiatric illness has typically been low-throughput in terms of both the number of subjects and the range of assays performed. Moreover, traditional case-control studies examining blood-based biomarkers are subject to potential confounds of treatment and other exposures common to patients with psychiatric illnesses. Our research addresses these challenges by leveraging large-scale, high-throughput proteomics data and Mendelian Randomization (MR) to examine the causal impact of circulating proteins on psychiatric phenotypes and cognitive task performance. Methods: We utilized plasma proteomics data from the UK Biobank (3,072 proteins assayed in 34,557 European-ancestry individuals) and deCODE Genetics (4,719 proteins measured across 35,559 Icelandic individuals). Significant proteomic quantitative trait loci (both cis-pQTLs and trans-pQTLs) served as MR instruments, with the most recent GWAS for schizophrenia, bipolar disorder, major depressive disorder, and cognitive task performance (all excluding overlapping UK Biobank participants) as phenotypic outcomes. Results: MR revealed 109 Bonferroni-corrected causal associations (44 novel) involving 88 proteins across the four phenotypes. Several immune-related proteins, including interleukins and complement factors, stood out as pleiotropic across multiple outcome phenotypes. Drug target enrichment analysis identified several novel potential pharmacologic repurposing opportunities, including anti-inflammatory agents for schizophrenia and bipolar disorder and duloxetine for cognitive performance. Conclusions: Identification of causal effects for these circulating proteins suggests potential biomarkers for these conditions and offers insights for developing innovative therapeutic strategies. The findings also indicate substantial evidence for the pleiotropic effects of many proteins across different phenotypes, shedding light on the shared etiology among psychiatric conditions and cognitive ability.

3.
J Genet ; 1022023.
Article in English | MEDLINE | ID: mdl-37674284

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked disorder with well-established clinical and allelic heterogeneity and ethnic disparity. With ~390,000 annual births with G6PD deficiency in India, it emerges as the most predictable and preventable inbornmetabolic error. Disease prevalence and mutation spectrum have been reasonably reported fromcentral, western and southern parts of India and are mostly retrospective studies.Although prevalence data fromnorth India is available, there is paucity of data on the mutation spectrum and genotype-phenotype correlation (GxP). Thus, we aimed at establishing the clinical and mutation profiles for G6PD, as a part of a large prospective newborn screening study conducted between 2014 and 2016 across hospitals in Delhi, India. G6PD activity levels were measured at 24-48 h of life for ~200,000 neonates using Victor 2D and/or Genomic Screening Processor followed by confirmatory spectrophotometric analysis usingRBClysates of the respective neonates based on clinical symptoms.Asubset of 570 enzyme deficient neonates were screened formutations by polymerase chain reaction-restriction fragment length polymorphismand/or Sanger sequencing.Mediterraneanwas the most common mutation (n=318; 55.8%) with the lowest enzyme activity and most severe phenotype, followed by G6PD Orissa (n=187;32.8%); Kerala-Kalyan (n=25); Jammu (n=24);Mahidol (n=14); Chattam(n=1) andNilgiri/Coimbra (n=1).Of the 163 intramural neonates followed up, 68 developed clinical jaundice. However, no correlation was observed between jaundice and enzyme level. Notable outcome of this first ever prospective screening approach for G6PD deficiency in neonates may help in prediction of disease severity and appropriate timely management.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Humans , Glucosephosphate Dehydrogenase Deficiency/diagnosis , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/genetics , Prospective Studies , Retrospective Studies , India/epidemiology , Mutation
4.
Psychiatry Res ; 314: 114586, 2022 08.
Article in English | MEDLINE | ID: mdl-35623238

ABSTRACT

Cognition is believed to be a product of human evolution, while schizophrenia is ascribed as the by-product with cognitive impairment as it's genetically mediated endophenotype. Genomic loci associated with these traits are enriched with recent evolutionary markers such as Human accelerated regions (HARs). HARs are markedly different in humans since their divergence with chimpanzees and mostly regulate gene expression by binding to transcription factors and/or modulating chromatin interactions. We hypothesize that variants within HARs may alter such functions and thus contribute to disease pathogenesis. 49 systematically prioritized variants from 2737 genome-wide HARs were genotyped in a north-Indian schizophrenia cohort (331 cases, 235 controls). Six variants were significantly associated with cognitive impairment in schizophrenia, thirteen with general cognition in healthy individuals. These variants were mapped to 122 genes; predicted to alter 79 transcription factors binding sites and overlapped with promoters, enhancers and/or repressors. These genes and TFs are implicated in neurocognitive phenotypes, autism, schizophrenia and bipolar disorders; a few are targets of common or repurposable antipsychotics suggesting their draggability; and enriched for immune response and brain developmental pathways. Immune response has been more strongly targeted by natural selection during human evolution and has a prominent role in neurodevelopment. Thus, its disruption may have deleterious consequences for neuronal and cognitive functions. Importantly, among the 15 associated SNPs, 12 showed association in several independent GWASs of different neurocognitive functions. Further analysis of HARs may be valuable to understand their role in cognition biology and identify improved therapeutics for schizophrenia.


Subject(s)
Schizophrenia , Cognition , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide/genetics , Schizophrenia/complications , Schizophrenia/genetics , Schizophrenia/pathology , Transcription Factors/genetics
6.
Schizophr Bull ; 47(3): 827-836, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33350444

ABSTRACT

The persistence of schizophrenia in human populations at a high prevalence and with a large heritability estimate despite reduced fertility and increased mortality rate is a Darwinian paradox. This may be likely if the genomic components that predispose to schizophrenia are also advantageous for the acquisition of important human traits, such as language and cognition. Accordingly, an emerging group of genomic markers of recent evolution in humans, namely human accelerated regions (HARs), since our divergence from chimpanzees, are gaining importance for neurodevelopmental disorders, such as schizophrenia. We hypothesize that variants within HARs may affect the expression of genes under their control, thus contributing to disease etiology. A total of 49 HAR single nucleotide polymorphisms (SNPs) were prioritized from the complete repertoire of HARs (n = 2737) based on their functional relevance and prevalence in the South Asian population. Test of association using 2 independent schizophrenia case-control cohorts of north Indian ethnicity (discovery: n = 930; replication: n = 1104) revealed 3 SNPs (rs3800926, rs3801844, and rs764453) from chromosome 7 and rs77047799 from chromosome 3 to be significantly associated (combined analysis: Bonferroni corrected P < .002-.000004). Of note, these SNPs were found to alter the expression of neurodevelopmental genes such as SLC25A13, MAD1L1, and ULK4; a few from the HOX gene family; and a few genes that are implicated in mitochondrial function. These SNPs may most likely alter binding sites of transcription factors, including TFCP2, MAFK, SREBF2, E2F1, and/or methylation signatures around these genes. These findings reiterate a neurodevelopmental basis of schizophrenia and also open up a promising avenue to investigate HAR-mediated mitochondrial dysfunction in schizophrenia etiology.


Subject(s)
Biological Evolution , Chromosomes, Human, Pair 3/genetics , Chromosomes, Human, Pair 7/genetics , Genetic Association Studies , Neurodevelopmental Disorders/genetics , Schizophrenia/genetics , Adult , Biomarkers , Case-Control Studies , Cohort Studies , Female , Gene Expression Regulation/genetics , Humans , India , Male , Middle Aged , Polymorphism, Single Nucleotide , Young Adult
7.
J Genet ; 992020.
Article in English | MEDLINE | ID: mdl-33168795

ABSTRACT

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide and with notable heterogeneity in its clinical presentation. Probability of contracting this highly contagious infection is similar across age groups but disease severity and fatality among aged patients with or without comorbidities are reportedly higher. Previous studies suggest that age associated transcriptional changes in lung and immune system results in a proinflammatory state and increased susceptibility to infectious lung diseases. Similarly, SARS-CoV-2 infection could augment ageing-related gene expression alterations resulting in severe outcomes in elderly patients. To identify genes that can potentially increase covid-19 disease severity in ageing people, we compared age associated gene expression changes with disease-associated expression changes in lung/BALF and whole blood obtained from publicly available data. We observed (i) a significant overlap of gene expression profiles of patients' BALF and blood with lung and blood of the healthy group, respectively; (ii) a more pronounced overlap in blood compared to lung; and (iii) a similar overlap between host genes interacting with SARS-CoV-2 and ageing blood transcriptome. Pathway enrichment analysis of overlapping gene sets suggest that infection alters expression of genes already dysregulated in the elderly, which together may lead to poor prognosis. eQTLs in these genes may also confer poor outcome in young patients worsening with age and comorbidities. Further, the pronounced overlap observed in blood may explain clinical symptoms including blood clots, strokes, heart attack, multi-organ failure etc. in severe cases. This model based on a limited patient dataset seems robust and holds promise for testing larger tissue specific datasets from patients with varied severity and across populations.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/genetics , Gene Expression Regulation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/genetics , Transcriptome , Aged , Betacoronavirus , Bronchoconstriction , COVID-19 , Case-Control Studies , Humans , Pandemics , Prognosis , Quantitative Trait Loci , SARS-CoV-2
8.
Schizophr Res ; 216: 288-294, 2020 02.
Article in English | MEDLINE | ID: mdl-31813803

ABSTRACT

Schizophrenia is a clinically and genetically heterogeneous neuropsychiatric disorder, with a polygenic basis but identification of the specific determinants is a continuing challenge. In this study, we analyzed a multigenerational family, with all healthy individuals in the first two generations, and four progeny affected with schizophrenia in the subsequent two generations, using whole exome sequencing. We identified five rare protein sequence altering heterozygous variants, in five different genes namely SMARCA5, PDE1B, TNIK, SMARCA2 and FLRT shared among all affected members and predicted to be damaging. Variants in SMARCA5 and PDE1B were inherited from the unaffected father whereas variants in TNIK, SMARCA2 and FLRT1 were inherited from the unaffected mother in all the three affected individuals in the third generation; and notably all these five variants were transmitted by an affected mother to her affected son. Microsatellite based analysis lent a modest linkage support (LOD score of 1.2; θ=0.0 at each variant). Of note, analysis of exome data of an ancestry matched unrelated schizophrenia cohort (n = 350), revealed a total of 16 rare variants (MAF < 0.01) in these five genes. Interestingly, these five genes involved in neurodevelopmental and/or neurotransmitter signaling processes are implicated in the etiology of schizophrenia previously. This study provides good evidence for a likely cumulative contribution of multiple rare variants from disease relevant genes with a threshold effect in disease development and seems to explain the unusual disease transmission pattern generally witnessed in such conditions, but warrants extensive replication efforts in families with similar complex disease inheritance profiles.


Subject(s)
Schizophrenia , Cohort Studies , Exome/genetics , Female , Genetic Linkage , Humans , Pedigree , Schizophrenia/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...