Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 118(4): 1097-101, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24400869

ABSTRACT

We report the results of an experimental study of the oxidation of cysteinesulfinic acid (CysSO2H) by [IrCl6](2-) in aqueous media at 25 °C in order to gain insight into the mechanisms of oxidation of alkylsulfinic acids by simple one-electron oxidants. When the reaction is performed with exclusion of O2 between pH 3 and 5, it is complete in several seconds. The products are [IrCl6](3-) and CysSO3H. Kinetic data obtained by stopped-flow UV-vis methods with [CysSO2H] ≫ [Ir(IV)]0 reveal the rate law to be -d[Ir(IV)]/dt = k[Ir(IV)](2)[CysSO2H]/[Ir(III)] with a negligible pH dependence. The value of k is (6.8 ± 0.12) × 10(3) M(-1) s(-1) at µ = 0.1 M (NaClO4). A mechanism is inferred in which the first step is a rapid and reversible electron-transfer equilibrium between Ir(IV) and CysSO2(-) to form Ir(III) and CysSO2(•). The second step is the rate-limiting inner-sphere oxidation of CysSO2(•) by Ir(IV). Production of CysSO3H is proposed to occur through hydrolysis of an Ir(III)-bound sulfonyl chloride that is the immediate product of the inner-sphere second step.


Subject(s)
Cysteine/analogs & derivatives , Iridium/chemistry , Sulfenic Acids/chemistry , Cysteine/chemistry , Molecular Conformation , Oxidation-Reduction
2.
Inorg Chem ; 51(24): 13303-11, 2012 Dec 17.
Article in English | MEDLINE | ID: mdl-23186256

ABSTRACT

The aqueous oxidations of glutathione (GSH) by [IrCl(6)](2-), [Fe(bpy)(2)(CN)(2)](+), and [Fe(bpy)(CN)(4)](-) are described. All three reactions are highly susceptible to catalysis by traces of copper ions, but this catalysis can be fully suppressed with suitable chelating agents. The direct oxidation by [IrCl(6)](2-) yields [IrCl(6)](3-) and GSO(3)(-); some GSSG is also obtained in the presence of O(2). The two Fe(III) oxidants are reduced to their corresponding Fe(II) complexes with nearly quantitative formation of GSSG. The kinetics of these reactions have been studied at 25 °C and µ = 0.1 M between pH 1 and 11. All three reactions have rate laws that are first order in [M(ox)] and [GSH](t) and show a general increase in rate with increasing pH. Detailed studies of the pH dependence enable the rate law to be elaborated with terms for reaction of the individual protonation states of GSH. These pH-resolved rate constants are interpreted with a mechanism having rate-limiting outer-sphere electron-transfer from the various thiolate forms of GSH.


Subject(s)
2,2'-Dipyridyl/chemistry , Coordination Complexes/chemistry , Glutathione/chemistry , Iridium/chemistry , Iron/chemistry , Nitriles/chemistry , Pyridines/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...