Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
J Biomed Mater Res A ; 111(8): 1185-1199, 2023 08.
Article in English | MEDLINE | ID: mdl-36708250

ABSTRACT

Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio-inspired composite material development has been quite challenged. In this research, we introduced new bio-inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ-caprolactone) (PCL), a synthetic hydrophobic-biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin-coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood-brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM-like properties that mimic synthetic-bio-interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications.


Subject(s)
Chitin , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Chitin/pharmacology , Endothelial Cells
3.
RSC Adv ; 11(9): 4921-4934, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-35424445

ABSTRACT

Nanoparticle (NP) toxicity assessment is a critical step in assessing the health impacts of NP exposure to both consumers and occupational workers. In vitro assessment models comprising cells cultured in a two-dimensional tissue culture plate (2D-TCP) are an efficient and cost-effective choice for estimating the safety risks of NPs. However, in vitro culture of cells in 2D-TCPs distorts cell-integrin and cell-cell interactions and is not able to replicate an in vivo phenotype. Three-dimensional (3D) in vitro platforms provide a unique alternative to bridge the gap between traditional 2D in vitro and in vivo models. In this study, novel microcapsules of alginate hydrogel incorporated with natural polymeric nanofibers (chitin nanofibrils) and synthetic polymeric nanofibers poly(lactide-co-glycolide) are designed as a 3D in vitro platform. This study demonstrates for the first time that electrodynamic assisted self-assembled fibrous 3D hydrogel (3D-SAF hydrogel) microcapsules with a size in the range of 300-500 µm in diameter with a Young's modulus of 12.7-42 kPa can be obtained by varying the amount of nanofibers in the hydrogel precursor solutions. The 3D-SAF microcapsules were found to mimic the in vivo cellular microenvironment for cells to grow, as evaluated using A549 cells. Higher cellular spreading and prolonged proliferation of A549 cells were observed in 3D-SAF microcapsules compared to control microcapsules without the nanofibers. The 3D-SAF microcapsule integrated well plate was used to assess the toxicity of model NPs, e.g., Al2O3 and ZnO. The toxicity levels of the model NPs were found to be dependent on the chemistry of the NPs and their physical agglomeration in the test media. Our results demonstrate that 3D-SAF microcapsules with an in vivo mimicking microenvironment can be developed as a physiologically relevant platform for high-throughput toxicity screening of NPs or pharmaceutical drugs.

4.
Nanoscale ; 12(46): 23556-23569, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33135713

ABSTRACT

Electrospun nanofiber (EN) technology has been used in the past to generate electrostatically charged multilayer-nanofibers. This platform offers versatile applications including in tissue engineering, drug delivery, wound dressings, and high-efficiency particulate air filters. In this study, we synthesized for the first time nanonet-nanofiber electrospun meshes (NNEMs) of polycaprolactone (PCL)-chitosan (CH) using EN technology. The fabricated NNEMs were utilized for high payload delivery and controlled release of a water-soluble drug. Diclofenac Sodium (DS), a hydrophilic anti-inflammatory drug, was selected as a model drug because of its high aqueous solubility and poor compatibility with insoluble polymers. Various compositions of DS drug-loaded NNEMs (DS-NNEMs) were synthesized. The physicochemical properties such as structure, morphology, and aqueous stability and the chemical properties of DS-NNEMs were evaluated. High drug entrapment efficiency and concentration-dependent drug release patterns were investigated for up to 14 days. Furthermore, the biocompatibility of the DS-NNEMs was tested with NIH 3T3 cells. The physicochemical characterization results showed that the DS drug is a key contributing factor in the generation of nanonet-nanofiber networks during electrospinning. DS-NNEMs also enhanced 3T3 cell adhesion, viability, and proliferation in the nanonet-nano fiber network through the controlled release of DS. The presented EN technology-based biodegradable NNEM material is not only limited for the controlled release of hydrophilic anti-inflammatory drugs, but also can be a suitable platform for loading and release of antiviral drugs.


Subject(s)
Chitosan , Nanofibers , Animals , Diclofenac , Drug Liberation , Mice , Polyesters , Surgical Mesh
5.
Sci Rep ; 9(1): 13951, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31562351

ABSTRACT

Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.


Subject(s)
Capsules , Cell Culture Techniques/methods , Hepatocytes/cytology , Nanofibers , Tissue Engineering/methods , Cell Survival/physiology , Hep G2 Cells , Humans
6.
J Funct Biomater ; 7(3)2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27490577

ABSTRACT

Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390-420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications.

7.
J Nanobiotechnology ; 6: 1, 2008 Jan 04.
Article in English | MEDLINE | ID: mdl-18173857

ABSTRACT

This project involved the synthesis of N-hexanoyl chitosan or simply modified chitosan (MC) stabilized iron oxide nanoparticles (MC-IOPs) and the biological evaluation of MC-IOPs. IOPs containing MC were prepared using conventional methods, and the extent of cell uptake was evaluated using mouse macrophages cell line (RAW cells). MC-IOPs were found to rapidly associate with the RAW cells, and saturation was typically reached within the 24 h of incubation at 37 degrees C. Nearly 8.53 +/- 0.31 pg iron/cell were bound or internalized at saturation. From these results, we conclude that MC-IOPs effectively deliver into RAW cells in vitro and we also hope MC-IOPs can be used for MRI enhancing agents in biomedical fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...