Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 21(16): 3174-3183, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34190746

ABSTRACT

The simultaneous separational control of motion of individual objects is vital to achieve high efficiency separation for biological analytes in biomedical applications. Here, we show the selective and directed movement of different populations of microbeads depending on their size in a flowless environment by means of a hexagonally structured soft-magnetic microchip platform. By adjusting strength and asymmetry of a modulated in-plane magnetic field, discrete and switchable movement patterns of two different types of beads above a magnetic surface structure are achieved. Starting from a heterogeneous mixture of bead populations and depending on the type of field sequences, directional forward transport of one type of beads is achieved, while the other bead population is immobilized. Despite significant size and magnetic content distributions within each population of microbeads, high separation efficiencies are demonstrated. The selection and movement processes are supported by full-scale magnetofluidic numerical simulations. The magnetic platform allowing multidirectional and selective microbead movement can greatly contribute to the progress of functional lab-on-chip and future diagnostics devices.


Subject(s)
Magnetics , Magnets , Magnetic Fields , Microspheres
SELECTION OF CITATIONS
SEARCH DETAIL
...