Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(13): 37208-37218, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36571694

ABSTRACT

Iodine is an essential microelement for humans and its deficiency leads to iodine deficiency disorder (IDD) which is a common problem faced by people in hilly areas. Biofortification of iodine is an option to overcome the IDD problem. Herein, we investigated the iodine uptake and accumulation in the edible portion of vegetables such as Brassica napus (BNP) and Brassica pekinensis (BPK) which were grown on two different soils such as sandy soil (SS) and silty loam soil (SLS) with different concentrations of iodine application (used in sodium iodide form) such as 0 ppm, 50 ppm, and 100 ppm. The concentration of iodine was determined by the oxidation of iodide, and nutrients were examined by double acid digestion. Different concentrations of iodine were noticed in silty loam and sandy soils, roots, and shoots of BNP and BPK, while the concentration follows the order: soils > roots > shoots. Iodine concentrations in the roots of BNP and BPK ranged from 46 to 223.7 µg/g which shows a strong correlation with other soil nutrients. Moreover, a large amount of iodine was lost due to the leaching. It is concluded that the biofortification of iodine increases its concentration in Brassica species. This work provides a reference for the iodine biofortification in plant species which will be helpful to control IDD.


Subject(s)
Brassica napus , Brassica , Iodine , Soil Pollutants , Humans , Soil , Biofortification , Dietary Supplements
2.
Heliyon ; 6(9): e05098, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33024872

ABSTRACT

Trichlorobiphenyl (TCB) is a persistent toxic organic compound and exerts more hydrophilicity than other polychlorinated biphenyl (PCB) compounds. PCBs have been used on large scale in transformer oil. To observe the strong ozone oxidation effect on the degradation of TCB in aqueous medium, synthetic wastewater was prepared from transformer oil with TCB. Microbubbles ozonation of TCB was done in order to completely oxidize it. A batch treatment system was used for 60 min in glass column with a diffuser at the bottom to convert ozone gas into microbubbles. GCMS analyzed TCB and other toxic compounds before and after the treatment. TCB was reduced to below detection limit during the first 20 min of ozonation. Ethylbenzene and 1-chloroheptacosine were identified after 10 and 20 min, the concentrations of these compounds increased to 1.45 and 3.9 mg/L after 60 min. Alkane with chlorine containing compounds were identified more than any other compounds. The alkanes compounds with chlorine, such as tetradecane 1-chloro, hexadecane 1-chloro, heptadecane 1-chloro, octadecane 1-chloro and nonadecane 1-chloro were found during 60 min of ozonation. Chemical oxygen demand (COD) in the wastewater reduced from 700 to 390 mg/L. Small increase in pH was observed from 7.7 to 8.3. In this study it was concluded that TCB and other pollutants in transformer oil were degraded with ozone dose, 0.05 g/min L in the shortest period of 60 min.

4.
World J Microbiol Biotechnol ; 34(8): 119, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30014433

ABSTRACT

Wastewater treatment based on ecological principles is a low cost and highly desirable solution for the developing countries like Pakistan. The present study evaluated the effectiveness of biological treatment systems including Internal Circulation (IC) anaerobic bioreactor and constructed wetlands (CWs) containing macrophytes and mixed algal cultures for industrial wastewater treatment. The IC bioreactor reduced COD (52%), turbidity (89%), EC (24%) of the industrial wastewater. However, the effluents of IC bioreactor did not comply with National Environmental Quality Standards (NEQS) of Pakistan. Post-treatment of IC bioreactor effluents was accomplished in CW containing macrophytes (Arundo donax and Eichhornia crassipes) and mixed algal culture. The CWs planted with macrophytes lowered the concentrations of COD (89%) and turbidity (99%). CWs with algal biomass were not effective in further polishing the effluent. Inhibition of algal biomass growth was observed due to physicochemical characteristics of wastewater. The integrated treatment system consisting of IC bioreactor and macrophytes was found more suitable option for industrial wastewater treatment.


Subject(s)
Bioreactors , Industrial Waste , Wastewater , Water Purification/methods , Wetlands , Anaerobiosis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Biomass , Bioreactors/microbiology , Eichhornia/growth & development , Hydrogen-Ion Concentration , Industrial Waste/analysis , Metals, Heavy/analysis , Metals, Heavy/metabolism , Nitrates/metabolism , Pakistan , Phosphates/analysis , Phosphates/metabolism , Plants , Poaceae/growth & development , Poaceae/metabolism , Sulfates/analysis , Sulfates/metabolism , Time Factors , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/analysis
5.
3 Biotech ; 7(4): 245, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28710744

ABSTRACT

Pyruvate carboxylase is a major enzyme for biosynthesis of organic acids like; citric acid, fumeric acid, and L-malic acid. These organic acids play very important role for biological remediation of heavy metals. In this study, gene walking method was used to clone and characterize pyruvate carboxylase gene (F3PYC) from heavy metal resistant indigenous fungal isolate Aspergillus flavus (F3). 3579 bp of an open reading frame which encodes 1193 amino acid protein (isoelectric point: 6.10) with a calculated molecular weight of 131.2008 kDa was characterized. Deduced protein showed 90-95% similarity to those deduced from PYC gene from different fungal strains including; Aspergillus parasiticus, Neosartorya fischeri, Aspergillus fumigatus, Aspergillus clavatus, and Aspergillus niger. Protein generated from the PYC gene was a homotetramer (α4) and having four potential N-linked glycosylation sites and had no signal peptide. Amongst most possible N-glycosylation sites were -N-S-S-I- at 36 amino acid, -N-G-T-V- at 237 amino acid, N-G-S-S- at 517 amino acid, and N-T-S-R- at 1111 amino acid, with several functions have been proposed for the carbohydrate moiety such as thermal stability, pH, and temperature optima for activity and stabilization of the three-dimensional structure. Hence, cloning of F3PYC gene from A. flavus has important biotechnological applications.

6.
Bioresour Technol ; 200: 1-7, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26476157

ABSTRACT

Microbial fuel cell (MFC) is a new technology that not only generates energy but treats wastewater as well. A dual chamber MFC was operated under laboratory conditions. Wastewater samples from vegetable oil industries, metal works, glass and marble industries, chemical industries and combined industrial effluents were collected and each was treated for 98h in MFC. The treatment efficiency for COD in MFC was in range of 85-90% at hydraulic retention time (HRT) of 96h and had significant impact on wastewater treatment as well. The maximum voltage of 890mV was generated when vegetable oil industries discharge was treated with columbic efficiency of 5184.7C. The minimum voltage was produced by Glass House wastewater which was 520mV. There was positive significant co-relation between COD concentration and generated voltage. Further research should be focused on the organic contents of wastewater and various ionic species affecting voltage generation in MFC.


Subject(s)
Bioelectric Energy Sources , Waste Disposal, Fluid/methods , Anaerobiosis , Biological Oxygen Demand Analysis , Electricity , Wastewater/chemistry
7.
Biomed Res Int ; 2013: 957853, 2013.
Article in English | MEDLINE | ID: mdl-24396832

ABSTRACT

Constructed wetland (CW) with monoculture of Arundo donax L. was investigated for the posttreatment of anaerobic bioreactor (ABR) treating combined industrial wastewater. Different dilutions of combined industrial wastewater (20, 40, 60, and 80) and original wastewater were fed into the ABR and then posttreated by the laboratory scale CW. The respective removal efficiencies of COD, BOD, TSS, nitrates, and ammonia were 80%, 78-82%, 91.7%, 88-92%, and 100% for original industrial wastewater treated in ABR. ABR was efficient in the removal of Ni, Pb, and Cd with removal efficiencies in the order of Cd (2.7%) > Ni (79%) > Pb (85%). Posttreatment of the ABR treated effluent was carried out in lab scale CW containing A. donax L. CW was effective in the removal of COD and various heavy metals present in ABR effluents. The posttreatment in CW resulted in reducing the metal concentrations to 1.95 mg/L, 0 mg/L, and 0.004 mg/L for Ni, Pb, and Cd which were within the permissible water quality standards for industrial effluents. The treatment strategy was effective and sustainable for the treatment of combined industrial wastewater.


Subject(s)
Bioreactors , Industrial Waste , Wastewater , Ammonia/metabolism , Anaerobiosis , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Bioreactors/microbiology , Industrial Waste/analysis , Metals, Heavy/isolation & purification , Nitrates/metabolism , Pakistan , Poaceae/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry , Wetlands
8.
J Hazard Mater ; 179(1-3): 15-20, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20172649

ABSTRACT

Advance recycling through pyrolytic technology has the potential of being applied to the management of plastic waste (PW). For this purpose 1 l volume, energy efficient batch reactor was manufactured locally and tested for pyrolysis of waste plastic. The feedstock for reactor was 50 g waste polyethylene. The average yield of the pyrolytic oil, wax, pyrogas and char from pyrolysis of PW were 48.6, 40.7, 10.1 and 0.6%, respectively, at 275 degrees C with non-catalytic process. Using catalyst the average yields of pyrolytic oil, pyrogas, wax and residue (char) of 50 g of PW was 47.98, 35.43, 16.09 and 0.50%, respectively, at operating temperature of 250 degrees C. The designed reactor could work at low temperature in the absence of a catalyst to obtain similar products as for a catalytic process.


Subject(s)
Conservation of Natural Resources/methods , Hydrocarbons/chemistry , Industrial Waste/analysis , Plastics/chemistry , Catalysis , Chemical Industry , Polyethylenes/chemistry , Solvents , Temperature , Zeolites
SELECTION OF CITATIONS
SEARCH DETAIL
...