Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 104(6): 266-274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37586749

ABSTRACT

Multiple approaches, including cryogenic electron microscopy (cryo-EM), indicate that the anesthetics etomidate and propofol modulate α1ß2/3γ2 GABAA receptors by binding in overlapping transmembrane inter-subunit sites near ßM286 and αL232 sidechains. High-precision approaches in functional receptors are needed for comparisons with cryo-EM. We previously used substituted cysteine modification and protection (SCAMP) with n-alkyl-methanethiosulfonate (MTS) reagents and electrophysiology in α1ß3M286Cγ2L receptors to estimate the distance from etomidate to ß3M286 with precision near 1.3 Å. Here, we address three more aims using this approach: (i) SCAMP with etomidate was tested in α1L232Cß3γ2L receptors; (ii) studies in α1L232Wß3M286Cγ2L receptors assessed whether α1L232W displaces etomidate relative to ß3M286C; and (iii) results with propofol were compared with those with etomidate. Voltage-clamp electrophysiology in Xenopus oocytes was used to assess persistent functional changes after exposing cysteine-substituted receptors to methyl-MTS through n-decyl-MTS. Overlap of modified cysteine sidechains with bound anesthetic was inferred when anesthetic co-application with alkyl-MTS reagent blocked the development of persistent effects. In α1L232Cß3γ2L receptors, only pentyl-MTS and hexyl-MTS induced persistent effects that were unaltered by etomidate co-application, precluding a direct estimate of intermolecular distance. In α1L232Wß3M286Cγ2L receptors, sidechain overlap with bound etomidate was inferred for modifications with ethyl-MTS through n-pentyl-MTS, with unambiguous cut-on and cut-off. Comparison with results in α1ß3M286Cγ2L reveals that α1L232W, which increases maximal sidechain length by 2.1 Å, displaces etomidate closer to ß3M286C by about 1.3 Å. Propofol results largely mirrored those with etomidate. These findings indicate that both etomidate and propofol bind within 1 Å of α1L232, consistent with cryo-EM structures. SIGNIFICANCE STATEMENT: We combined electrophysiology, cysteine substitutions, and n-alkyl-methanethiosulfonate modifiers in functional GABAA receptors to enable precise estimates of the distance between ß3M286C sidechains and anesthetics (etomidate and propofol) bound in transmembrane ß+/α- inter-subunit pockets. Comparing results in α1ß3M286Cγ2L and α1L232Wß3M286Cγ2L receptors reveals that α1L232W mutations displace both anesthetics toward ß3M286C, indicating that these anesthetics bind within 1 Å of the α1L232 sidechain in functional receptors, consistent with cryogenic electron microscopy structures derived under nonphysiologic conditions.


Subject(s)
Anesthetics , Etomidate , Propofol , Receptors, GABA-A/metabolism , Etomidate/pharmacology , Etomidate/chemistry , Propofol/pharmacology , Cysteine/genetics , Anesthetics/pharmacology , Binding Sites , Mutation , gamma-Aminobutyric Acid/genetics
2.
Anesthesiology ; 137(5): 568-585, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36018576

ABSTRACT

BACKGROUND: Etomidate, barbiturates, alfaxalone, and propofol are anesthetics that allosterically modulate γ-aminobutyric acid type A (GABAA) receptors via distinct sets of molecular binding sites. Two-state concerted coagonist models account for anesthetic effects and predict supra-additive interactions between drug pairs acting at distinct sites. Some behavioral and molecular studies support these predictions, while other findings suggest potentially complex anesthetic interactions. We therefore evaluated interactions among four anesthetics in both animals and GABAA receptors. METHODS: The authors used video assessment of photomotor responses in zebrafish larvae and isobolography to evaluate hypnotic drug pair interactions. Voltage clamp electrophysiology and allosteric shift analysis evaluated coagonist interactions in α1ß3γ2L receptors activated by γ-aminobutyric acid (GABA) versus anesthetics [log(d, AN):log(d, GABA) ratio]. Anesthetic interactions at concentrations relevant to zebrafish were assessed in receptors activated with low GABA. RESULTS: In zebrafish larvae, etomidate interacted additively with both propofol and the barbiturate R-5-allyl-1-methyl m-trifluoromethyl mephobarbital (R-mTFD-MPAB; mean ± SD α = 1.0 ± 0.07 and 0.96 ± 0.11 respectively, where 1.0 indicates additivity), while the four other drug pairs displayed synergy (mean α range 0.76 to 0.89). Electrophysiologic allosteric shifts revealed that both propofol and R-mTFD-MPAB modulated etomidate-activated receptors much less than GABA-activated receptors [log(d, AN):log(d, GABA) ratios = 0.09 ± 0.021 and 0.38 ± 0.024, respectively], while alfaxalone comparably modulated receptors activated by GABA or etomidate [log(d) ratio = 0.87 ± 0.056]. With low GABA activation, etomidate combined with alfaxalone was supra-additive (n = 6; P = 0.023 by paired t test), but etomidate plus R-mTFD-MPAB or propofol was not. CONCLUSIONS: In both zebrafish and GABAA receptors, anesthetic drug pairs interacted variably, ranging from additivity to synergy. Pairs including etomidate displayed corresponding interactions in animals and receptors. Some of these results challenge simple two-state coagonist models and support alternatives where different anesthetics may stabilize distinct receptor conformations, altering the effects of other drugs.


Subject(s)
Anesthetics , Etomidate , Propofol , Animals , Etomidate/pharmacology , Etomidate/metabolism , Zebrafish/metabolism , Receptors, GABA/metabolism , Mephobarbital , Receptors, GABA-A , Anesthetics/pharmacology , Propofol/pharmacology , Barbiturates/pharmacology , Binding Sites , Hypnotics and Sedatives/pharmacology , gamma-Aminobutyric Acid , Electrophysiology
3.
Data Brief ; 32: 106282, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32984474

ABSTRACT

High throughput sequencing data collected from acid rock drainage (ARD) communities can reveal the active taxonomic and functional diversity of these extreme environments, which can be exploited for bioremediation, pharmaceutical, and industrial applications. Here, we report a seasonal comparison of a microbiome and transcriptome in Ely Brook (EB-90M), a confluence of clean water and upstream tributaries that drains the Ely Copper Mine Superfund site in Vershire, VT, USA. Nucleic acids were extracted from EB-90M water and sediment followed by shotgun sequencing using the Illumina NextSeq platform. Approximately 575,933 contigs with a total length of 1.54 Gbp were generated. Contigs of at least a size of 3264 (N50) or greater represented 50% of the sequences and the longest contig was 488,568 bp in length. Using Centrifuge against the NCBI "nt" database 141 phyla, including candidate phyla, were detected. Roughly 380,000 contigs were assembled and ∼1,000,000 DNA and ∼550,000 cDNA sequences were identified and functionally annotated using the Prokka pipeline. Most expressed KEGG-annotated microbial genes were involved in amino acid metabolism and several KEGG pathways were differentially expressed between seasons. Biosynthetic gene clusters involved in secondary metabolism as well as metal- and antibiotic-resistance genes were annotated, some of which were differentially expressed, colocalized, and coexpressed. These data can be used to show how ecological stimuli, such as seasonal variations and metal concentrations, affect the ARD microbiome and select taxa to produce novel natural products. The data reported herein is supporting information for the research article "Characterization of an acid rock drainage microbiome and transcriptome at the Ely Copper Mine Superfund site" by Giddings et al. [1].

4.
PLoS One ; 15(8): e0237599, 2020.
Article in English | MEDLINE | ID: mdl-32785287

ABSTRACT

The microbial oxidation of metal sulfides plays a major role in the formation of acid rock drainage (ARD). We aimed to broadly characterize the ARD at Ely Brook, which drains the Ely Copper Mine Superfund site in Vermont, USA, using metagenomics and metatranscriptomics to assess the metabolic potential and seasonal ecological roles of microorganisms in water and sediment. Using Centrifuge against the NCBI "nt" database, ~25% of reads in sediment and water samples were classified as acid-tolerant Proteobacteria (61 ± 4%) belonging to the genera Pseudomonas (2.6-3.3%), Bradyrhizobium (1.7-4.1%), and Streptomyces (2.9-5.0%). Numerous genes (12%) were differentially expressed between seasons and played significant roles in iron, sulfur, carbon, and nitrogen cycling. The most abundant RNA transcript encoded the multidrug resistance protein Stp, and most expressed KEGG-annotated transcripts were involved in amino acid metabolism. Biosynthetic gene clusters involved in secondary metabolism (BGCs, 449) as well as metal- (133) and antibiotic-resistance (8501) genes were identified across the entire dataset. Several antibiotic and metal resistance genes were colocalized and coexpressed with putative BGCs, providing insight into the protective roles of the molecules BGCs produce. Our study shows that ecological stimuli, such as metal concentrations and seasonal variations, can drive ARD taxa to produce novel bioactive metabolites.


Subject(s)
Acids/chemistry , Metagenome , Microbiota , Mining , Proteobacteria/genetics , Proteobacteria/metabolism , Transcriptome , Copper/chemistry , Genetic Markers , Minerals/chemistry , Proteobacteria/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...