Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ERJ Open Res ; 9(2)2023 Mar.
Article in English | MEDLINE | ID: mdl-37057090

ABSTRACT

Severe asthma represents an important clinical unmet need despite the introduction of biologic agents. Although advanced omics technologies have aided researchers in identifying clinically relevant molecular pathways, there is a lack of an integrated omics approach in severe asthma particularly in terms of its evolution over time. The collaborative Korea-UK research project Precision Medicine Intervention in Severe Asthma (PRISM) was launched in 2020 with the aim of identifying molecular phenotypes of severe asthma by analysing multi-omics data encompassing genomics, epigenomics, transcriptomics, proteomics, metagenomics and metabolomics. PRISM is a prospective, observational, multicentre study involving patients with severe asthma attending severe asthma clinics in Korea and the UK. Data including patient demographics, inflammatory phenotype, medication, lung function and control status of asthma will be collected along with biological samples (blood, sputum, urine, nasal epithelial cells and exhaled breath condensate) for omics analyses. Follow-up evaluations will be performed at baseline, 1 month, 4-6 months and 10-12 months to assess the stability of phenotype and treatment responses for those patients who have newly begun biologic therapy. Standalone and integrated omics data will be generated from the patient samples at each visit, paired with clinical information. By analysing these data, we will identify the molecular pathways that drive lung function, asthma control status, acute exacerbations and the requirement for daily oral corticosteroids, and that are involved in the therapeutic response to biological therapy. PRISM will establish a large multi-omics dataset of severe asthma to identify potential key pathophysiological pathways of severe asthma.

3.
Respir Res ; 22(1): 10, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413387

ABSTRACT

BACKGROUND: Patients with severe asthma may have a greater risk of dying from COVID-19 disease. Angiotensin converting enzyme-2 (ACE2) and the enzyme proteases, transmembrane protease serine 2 (TMPRSS2) and FURIN, are needed for viral attachment and invasion into host cells. METHODS: We examined microarray mRNA expression of ACE2, TMPRSS2 and FURIN in sputum, bronchial brushing and bronchial biopsies of the European U-BIOPRED cohort. Clinical parameters and molecular phenotypes, including asthma severity, sputum inflammatory cells, lung functions, oral corticosteroid (OCS) use, and transcriptomic-associated clusters, were examined in relation to gene expression levels. RESULTS: ACE2 levels were significantly increased in sputum of severe asthma compared to mild-moderate asthma. In multivariate analyses, sputum ACE2 levels were positively associated with OCS use and male gender. Sputum FURIN levels were significantly related to neutrophils (%) and the presence of severe asthma. In bronchial brushing samples, TMPRSS2 levels were positively associated with male gender and body mass index, whereas FURIN levels with male gender and blood neutrophils. In bronchial biopsies, TMPRSS2 levels were positively related to blood neutrophils. The neutrophilic molecular phenotype characterised by high inflammasome activation expressed significantly higher FURIN levels in sputum than the eosinophilic Type 2-high or the pauci-granulocytic oxidative phosphorylation phenotypes. CONCLUSION: Levels of ACE2 and FURIN may differ by clinical or molecular phenotypes of asthma. Sputum FURIN expression levels were strongly associated with neutrophilic inflammation and with inflammasome activation. This might indicate the potential for a greater morbidity and mortality outcome from SARS-CoV-2 infection in neutrophilic severe asthma.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , Asthma/enzymology , Furin/biosynthesis , Neutrophils/enzymology , Serine Endopeptidases/biosynthesis , Sputum/enzymology , Adult , Angiotensin-Converting Enzyme 2/genetics , Asthma/epidemiology , Asthma/genetics , COVID-19/enzymology , COVID-19/epidemiology , COVID-19/genetics , Cohort Studies , Female , Furin/genetics , Humans , Male , Middle Aged , Serine Endopeptidases/genetics , Severity of Illness Index
4.
PLoS One ; 8(11): e80782, 2013.
Article in English | MEDLINE | ID: mdl-24260479

ABSTRACT

INTRODUCTION: Chronic exposure to high levels of ozone induces emphysema and chronic inflammation in mice. We determined the recovery from ozone-induced injury and whether an antioxidant, N-acetylcysteine (NAC), could prevent or reverse the lung damage. METHODS: Mice were exposed to ozone (2.5 ppm, 3 hours/12 exposures, over 6 weeks) and studied 24 hours (24h) or 6 weeks (6W) later. Nac (100 mg/kg, intraperitoneally) was administered either before each exposure (preventive) or after completion of exposure (therapeutic) for 6 weeks. RESULTS: After ozone exposure, there was an increase in functional residual capacity, total lung volume, and lung compliance, and a reduction in the ratio of forced expiratory volume at 25 and 50 milliseconds to forced vital capacity (FEV25/FVC, FEV50/FVC). Mean linear intercept (Lm) and airway hyperresponsiveness (AHR) to acetylcholine increased, and remained unchanged at 6W after cessation of exposure. Preventive NAC reduced the number of BAL macrophages and airway smooth muscle (ASM) mass. Therapeutic NAC reversed AHR, and reduced ASM mass and apoptotic cells. CONCLUSION: Emphysema and lung function changes were irreversible up to 6W after cessation of ozone exposure, and were not reversed by NAC. The beneficial effects of therapeutic NAC may be restricted to the ASM.


Subject(s)
Acetylcysteine/pharmacology , Expectorants/pharmacology , Ozone/adverse effects , Pulmonary Disease, Chronic Obstructive/chemically induced , Pulmonary Disease, Chronic Obstructive/prevention & control , 8-Hydroxy-2'-Deoxyguanosine , Acetylcysteine/administration & dosage , Animals , Apoptosis , Bronchial Hyperreactivity/chemically induced , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/blood , Disease Models, Animal , Emphysema/pathology , Expectorants/administration & dosage , Gene Expression , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung/physiopathology , Malondialdehyde/metabolism , Mice , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Function Tests
5.
Curr Allergy Asthma Rep ; 8(2): 171-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18417060

ABSTRACT

Glucocorticoid insensitivity presents a profound management problem in patients with asthma because conventional therapies are not effective. Glucocorticoids, acting through the glucocorticoid receptor (GR), are able to selectively repress inflammatory gene expression by utilizing several distinct mechanisms targeting nuclear factor-varphiB and activator protein-1 activation complexes and by effects on mitogen-activated protein kinases. Different model systems often activate distinct sets of signaling molecules and different glucocorticoid responsiveness may result from differences in concentrations and timing of steroid treatment of cells, GR expression levels, and the precise inflammatory stimulus used. Thus, abnormal activation of many signaling pathways may affect corticosteroid responsiveness in patients with corticosteroid-resistant asthma. Understanding the molecular mechanisms of GR action and inaction may lead to the development of new anti-inflammatory drugs or enable clinicians to reverse the relative steroid-insensitivity that is characteristic of some patients with severe asthma.


Subject(s)
Anti-Asthmatic Agents/pharmacology , Asthma/drug therapy , Drug Resistance/immunology , Glucocorticoids/pharmacology , Asthma/genetics , Drug Resistance/drug effects , Drug Resistance/genetics , Genetic Predisposition to Disease , Humans , Receptors, Glucocorticoid , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...