Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37725206

ABSTRACT

In the present study, the effect of gamma irradiation and 90 MeV carbon ion beam irradiation on electrical properties and optical of Polystyrene/Eu2O3 nanocomposites at different fluences were examined. Modified electrical and optical responses of polymer nanocomposites were investigated using Impedance, Photoluminescence and UV-VIS spectroscopies. FTIR analysis shows a reduction of various modes of molecular vibrations caused by 90 MeV carbon ion beam irradiation. The polymer nanocomposites change into a graphite-like structure upon both kinds of irradiations as evidenced by the decrease in the optical band gap. The photoluminescence emission spectra show three characteristic peaks of Eu3+ ions, when excited at 247 nm wavelength. It emits intense red light suggesting its potential for usage in LED technology. The peak intensity of PL emission spectra is enhanced after ion beam irradiation and is because of the formation new radiative combination; however, it decreases upon gamma irradiation. Dielectric responses of pristine and irradiated polymer nanocomposites were studied over the frequency range of 100 Hz to 100 kHz using LCR meter. There appears a significant improvement in the dielectric response as a result of structural changes in both types of irradiations. AFM images show that the film becomes smoother upon both types of irradiations.

2.
Luminescence ; 35(3): 412-417, 2020 May.
Article in English | MEDLINE | ID: mdl-31868288

ABSTRACT

In the present study, polystyrene:europium (III) oxide polymer films at a ratio of 95:5 wt% were prepared using a solution casting technique. These polymeric films were irradiated with 5, 25 and 50 kGy γ-radiation doses and their thermoluminescence (TL) and thermal properties were studied as a function of radiation dose. Analysis of Fourier transform infrared spectra revealed different modes of vibration and polymer-filler interaction. Reduction of vibrational modes with radiation dose was observed. The TL glow curve intensity was observed to increase with increasing radiation dose and to become broader in the 378 K and 444 K regions. Detrapping of electrons implied by the glow curve was caused by thermally induced macromolecular motion, concurrent with ß-relaxation in polystyrene. The TL glow curve parameters were computed using a glow curve deconvolution method. Differential scanning calorimetry analysis indicated that the glass transition temperature (Tg ) increased with increase in dose, suggesting crosslinking of the polymer chain. Scanning electron microscopy analysis evidenced the change in surface morphology due to γ-irradiation.


Subject(s)
Europium/chemistry , Luminescence , Oxides/chemistry , Polystyrenes/chemistry , Temperature , Gamma Rays , Luminescent Measurements
3.
J Fluoresc ; 29(4): 1007-1012, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31292811

ABSTRACT

Polystyrene polymer (PS)/Al2O3 nanocomposite films were synthesized from PS:Al2O3 (1-x):x mixtures (x = 3 wt%) via solution casting method. These nanocomposite films were exposed to 5 MeV proton beam of different fluences. The proton beam induced changes in optical and luminescence properties of PS and PS:Al2O3 films have been investigated using FTIR, UV-visible, Photoluminescence and thermoluminescence studies. FTIR studies concede reduction in the peak intensity due to doping of Al2O3 and proton irradiation. The UV-visible spectra show shifting of absorption edge with increasing fluence. This can be attributed to creation of conjugated system of bonds. The band gap of PS and 3 wt% Al2O3 doped PS is observed to be 4.38 eV and 4.34 eV, respectively, whereas the band gaps of proton irradiated 3 wt% Al2O3 doped PS films are found to be 4.28 eV and 4.23 eV at the fluences of 1 × 1012 ions/cm2 and 1 × 1013 ions/cm2, respectively. The photoluminescence emission spectra show three peaks, wavelength at 411 nm, 435 nm and 462 nm corresponding to the PS in violet-blue region when excited with near UV wavelength of 380 nm. The intensity of emission peaks was found to increase with increasing fluence. The thermoluminescence curves of PS/Al2O3 were analysed using glow curve deconvolution method (GCD). The increase in TL peak intensity of the glow curve was observed as fluence increase.

4.
Luminescence ; 33(7): 1243-1248, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30144266

ABSTRACT

In the present study, europium (III) oxide (Eu2 O3 )-doped polystyrene (PS) polymer films were synthesized using a solution-casting technique for different filler levels. These films were irradiated with 5, 25 and 50 kGy γ doses and characterized using various techniques, viz. X-ray diffraction (XRD), and UV-visible and photoluminescence (PL) spectroscopies as a function of composition level and radiation dose. The UV-visible spectra indicated a decrease in the optical direct band gap of composite films with increasing concentrations of dopant and radiation dose. The band gaps of composites obtained using Tauc's equation were found to be 4.38, 4.37, 4.36 and 4.34 eV for 0, 1, 3 and 5% Eu2 O3 -doped PS respectively, while the band gaps of 5% Eu2 O3 -doped PS polymer films irradiated with 5, 25 and 50 kGy were found to be 4.30, 4.26 and 4.21 eV, respectively. Photoluminescence (PL) emission spectra showed the characteristic peaks of Eu3+ at 595 nm, 612 nm and 617 nm with an excitation wavelength of 247 nm. The intensity of characteristic peaks of Eu3+ was observed to increase with increasing filler concentration, while it was found to decrease with increasing radiation dose. The polymer under study may be useful in accidental dosimetry. As photoluminescence studies are carried out after a gap of 200 h from irradiation and PL emission of γ-irradiated polymer yielded 10 times emission when compared with non-irradiated polymer.


Subject(s)
Europium/chemistry , Luminescent Agents/chemistry , Polystyrenes/chemistry , Gamma Rays , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...