Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Discov Today ; : 104109, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032809

ABSTRACT

The utilization of ionic liquids (ILs) in pharmaceutical drug delivery applications has seen significant expansion in recent years, owing to their distinctive characteristics and inherent adjustability. These innovative compounds can be used to tackle challenges associated with traditional dosage forms, such as polymorphism, inadequate solubility, permeability, and efficacy in topical drug delivery systems. Here, we provide a brief classification of ILs, and their effectiveness in augmenting transmucosal drug delivery approaches by improving the solubility and permeability of active pharmaceutical ingredients (APIs) by temporary mucus modulation aiding the paracellular transport of APIs, prolonging drug retention, and, thus, aiding controlled drug release across various mucosal surfaces. We also highlight potential advances in, and future perspectives of, IL-based formulations in mucosal drug delivery.

2.
Nanomedicine (Lond) ; 19(11): 947-964, 2024.
Article in English | MEDLINE | ID: mdl-38483291

ABSTRACT

Aim: This study aims to explore potential of transniosomes, a hybrid vesicular system, as ocular drug-delivery vehicle. Materials & methods: Thin-film hydration technique was used to fabricate brinzolamide-loaded transniosomes (BRZ-TN) and optimized using Box-Behnken design, further exhaustively characterized for physicochemical evaluations, deformability, drug release, permeation and preclinical evaluations for antiglaucoma activity. Results: The BRZ-TN showed ultradeformability (deformability index: 5.71), exhibiting sustained drug release without irritation (irritancy score: 0) and high permeability compared with the marketed formulation or free drug suspension. The extensive in vivo investigations affirmed effective targeted delivery of transniosomes, with brinzolamide reducing intraocular pressure potentially. Conclusion: Our findings anticipated that BRZ-TN is a promising therapeutic nanocarrier for effectively delivering cargo to targeted sites by crossing corneal barriers.


[Box: see text].


Subject(s)
Cornea , Glaucoma , Liposomes , Permeability , Sulfonamides , Thiazines , Cornea/metabolism , Cornea/drug effects , Animals , Sulfonamides/chemistry , Sulfonamides/pharmacology , Glaucoma/drug therapy , Liposomes/chemistry , Thiazines/chemistry , Thiazines/pharmacology , Drug Liberation , Humans , Intraocular Pressure/drug effects , Carbonic Anhydrase Inhibitors/chemistry , Carbonic Anhydrase Inhibitors/pharmacology , Drug Carriers/chemistry , Rabbits , Drug Delivery Systems , Male
3.
AAPS PharmSciTech ; 25(3): 52, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429601

ABSTRACT

As a major public health issue, colorectal cancer causes 9.4% of total cancer-related deaths and comprises 10% of new cancer diagnoses worldwide. In the year 2023, an estimated 153,020 people are expected to receive an identification of colorectal cancer (CRC), resulting in roughly 52,550 fatalities anticipated as a result of this illness. Among those impacted, approximately 19,550 cases and 3750 deaths are projected to occur in individuals under the age of 50. Irinotecan (IRN) is a compound derived from the chemical structure of camptothecin, a compound known for its action in inhibiting DNA topoisomerase I. It is employed in the treatment strategy for CRC therapies. Comprehensive in vivo and in vitro studies have robustly substantiated the anticancer efficacy of these compounds against colon cancer cell lines. Blending irinotecan in conjunction with other therapeutic cancer agents such as oxaliplatin, imiquimod, and 5 fluorouracil enhanced cytotoxicity and improved chemotherapeutic efficacy. Nevertheless, it is linked to certain serious complications and side effects. Utilizing nano-formulated prodrugs within "all-in-one" carrier-free self-assemblies presents an effective method to modify the pharmacokinetics and safety portfolio of cytotoxic chemotherapeutics. This review focuses on elucidating the mechanism of action, exploring synergistic effects, and innovating novel delivery approaches to enhance the therapeutic efficacy of irinotecan.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colonic Neoplasms , Humans , Irinotecan/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Colonic Neoplasms/drug therapy , Camptothecin/pharmacology , Camptothecin/therapeutic use , Fluorouracil/pharmacology
4.
Pharm Dev Technol ; 29(1): 1-12, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38015058

ABSTRACT

One of the most prevalent cancers affecting women globally is cervical cancer. Cervical cancer is thought to cause 570 000 new cases annually, and standard treatments can have serious side effects. In this work, the main aim is to design, fabrication, and evaluation of carboplatin loaded chitosan coated liposomal formulation (CCLF-I) for vaginal delivery in the treatment of cervical cancer. The particle size and polydispersity index of the CCLF-1 were observed at 269.33 ± 1.15 and 0.40 ± 0.002 nm, respectively. The in vitro mucin binding studies showed good adhesiveness of CCLF-I as compared to plain liposomes (CPLF-I), which was found at 23.49 and 10.80%, respectively. The ex-vivo percent drug permeation from plain liposomal formulation (CPLF-I) was found to be higher in comparison to chitosan coated liposomal formulation which was 56.33% while in CCLF-I it was observed 47.32% this is due to, higher retainability of delivery system (CCLF-I) on targeted site attained by coating of mucoadhesive polymer on liposomes. Ex vivo tissue retention studies exhibited 24.2% of CCLF-I in comparison to 10.34% from plain drug formulation (CPLF-I). The in vivo vaginal retention studies exhibited 14% of drug retention after 24 h from the novel formulation in comparison to 6% from the plain formulation. The developed CCLF-I formulation would open a new avenue in the cervical treatment.


Subject(s)
Chitosan , Uterine Cervical Neoplasms , Female , Humans , Liposomes , Carboplatin , Research Design , Uterine Cervical Neoplasms/drug therapy , Drug Delivery Systems , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...