Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 2(11): 3111-8, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21062049

ABSTRACT

A general method has been developed for transferring interfacially trapped, submonolayer hexagonal arrays of silica particles for nano- and mesoscopic surface patterning. Poly(n-butyl acrylate) and poly(n-butyl acrylate-random-N,N-diethylaminoethyl acrylate) brushes were grafted on the substrates via the "graft-from" method using atom transfer radical polymerization. The polymer brush served as an adhesive promoter between the particles and the substrate and proved to be effective for locking the particles in the hexagonal lattice against the lateral capillary force arising from a thin layer of water attached to the surface of the substrate. Several parameters that influence preservation of the order of the particle arrays were examined. These include brush thickness, brush composition, interparticle distance, and particle diameter.

2.
Langmuir ; 26(22): 16662-6, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-20949914

ABSTRACT

A colloidal lithography method has been developed for patterning nonplanar surfaces. Hexagonal noncontiguously packed (HNCP) colloidal particles 127 nm-2.7 µm in diameter were first formed at the air-water interface and then adsorbed onto a substrate coated with a layer of polymer adhesive ∼17 nm thick. The adhesive layer plays the critical role of securing the order of the particles against the destructive lateral capillary force generated by a thin film of water after the initial transfer of the particles from the air-water interface. The soft lithography method is robust and very simple to carry out. It is applicable to a variety of surface curvatures and for both inorganic and organic colloidal particles.


Subject(s)
Colloids , Printing/methods , Air , Microscopy, Electron, Scanning , Surface Properties , Water/chemistry
3.
Langmuir ; 25(13): 7265-70, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19499940

ABSTRACT

Hexagonal noncontiguously packed (HNCP) arrays of submicrometer-sized particles trapped at an air-water interface are successfully transferred to solid substrates. The long-range order of the hexagonal arrays at the interface can be improved by compression-relaxation cycles. The interparticle distance (i.e., the periodicity of the hexagonal array) can be controlled by varying the degree of compression of the particle film. The critical characteristics of the substrate surface are hydrophobicity (advancing water contact angle of >70 degrees) and a charge complementary to the surface of the particles. Suitable silicon and glass substrates are easily prepared by treatment with commercially available organosilicon compounds. Two transfer processes have been developed. When the parallel transfer process is used, the HNCP arrays are deposited on the solid substrates with minimal pattern distortion. The vertical dipping transfer distorts the pattern and renders a sense of directionality perpendicular to the dipping direction. This surface patterning technique is applied to fabrication of subwavelength grating for antireflection in the visible region. Antireflective HNCP arrays comprising varied particle diameters and pattern periodicities are fabricated on glass substrates to demonstrate the effects of these parameters on the antireflection performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...