Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 17387, 2018 Nov 26.
Article in English | MEDLINE | ID: mdl-30478346

ABSTRACT

The invention of optical tweezers almost forty years ago has triggered applications spanning multiple disciplines and has also found its way into commercial products. A major breakthrough came with the invention of holographic optical tweezers (HOTs), allowing simultaneous manipulation of many particles, traditionally done with arrays of scalar beams. Here we demonstrate a vector HOT with arrays of digitally controlled Higher-Order Poincaré Sphere (HOPS) beams. We employ a simple set-up using a spatial light modulator and show that each beam in the array can be manipulated independently and set to an arbitrary HOPS state, including replicating traditional scalar beam HOTs. We demonstrate trapping and tweezing with customized arrays of HOPS beams comprising scalar orbital angular momentum and cylindrical vector beams, including radially and azimuthally polarized beams simultaneously in the same trap. Our approach is general enough to be easily extended to arbitrary vector beams, could be implemented with fast refresh rates and will be of interest to the structured light and optical manipulation communities alike.

2.
Opt Express ; 25(21): 25697-25706, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041234

ABSTRACT

Complex vector light fields, classically entangled in polarization and phase, have become ubiquitous in a wide variety of research fields. This has triggered the demonstration of a wide variety of generation techniques. Of particular relevance are those based on computer-controlled devices due to their great flexibility. In particular, spatial light modulators have demonstrated their high capabilities to generate any vector beam, with various spatial profiles and polarization distributions. Here, we put forward a novel technique that exploits the superposition principle in optics to enable the simultaneous generation of many vector beams using a single digital hologram. As proof-of-principle, we demonstrated the simultaneous generation of sixteen vector vortex beams with various polarization distributions and spatial shapes on a single SLM, each with their own spatial shape and polarization distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...