Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Indian J Clin Biochem ; 32(2): 124-133, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28428686

ABSTRACT

Environmental occurrence of Aspergillus and other fungal spores are hazardous to humans and animals. They cause a broad spectrum of clinical complications. Contamination of aflatoxins in agri-food and feed due to A. flavus and A. parasiticus result in toxicity in humans and animals. Recent advances in aspergillus genomics and aflatoxin management practices are encouraging to tackle the challenges posed by important aspergillus species.

2.
PLoS One ; 9(2): e88090, 2014.
Article in English | MEDLINE | ID: mdl-24505389

ABSTRACT

Cyclophilins are prolyl isomerases with multitude of functions in different cellular processes and pathological conditions. Cyclophilin A (PpiA) of Mycobacterium tuberculosis is secreted during infection in intraphagosomal niche. However, our understanding about the evolutionary origin, secretory mechanism or the interactome of M. tuberculosis PpiA is limited. This study demonstrates through phylogenetic and structural analyses that PpiA has more proximity to human cyclophilins than the prokaryotic counterparts. We report a unique N-terminal sequence (MADCDSVTNSP) present in pathogenic mycobacterial PpiA and absent in non-pathogenic strains. This sequence stretch was shown to be essential for PpiA secretion. The overexpression of full-length PpiA from M. tuberculosis in non-pathogenic Mycobacterium smegmatis resulted in PpiA secretion while truncation of the N-terminal stretch obstructed the secretion. In addition, presence of an ESX pathway substrate motif in M. tuberculosis PpiA suggested possible involvement of Type VII secretion system. Site-directed mutagenesis of key residues in this motif in full-length PpiA also hindered the secretion in M. smegmatis. Bacterial two-hybrid screens with human lung cDNA library as target were utilized to identify interaction partners of PpiA from host repertoire, and a number of substrates with functional representation in iron storage, signal transduction and immune responses were detected. The extensive host interactome coupled with the sequence and structural similarity to human cyclophilins is strongly suggestive of PpiA being deployed by M. tuberculosis as an effector mimic against the host cyclophilins.


Subject(s)
Cyclophilin A/genetics , Cyclophilin A/metabolism , Cyclophilins/metabolism , Host-Pathogen Interactions/genetics , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Protein Sorting Signals/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Molecular Sequence Data , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL