Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
SAR QSAR Environ Res ; 29(11): 875-893, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30286617

ABSTRACT

The accurate prediction of toxicokinetic parameters arising from oral, dermal and inhalation routes of chemical exposure is a key element in chemical safety assessments. In this research, the physiologically based pharmacokinetic (PBPK) GastroPlusTM software was evaluated against a series of chemicals for the prediction of toxicokinetic parameters. Overall, 67% of predicted intrinsic clearance (Clint) values were within 1- to 10-fold of empirical data for 463 compounds, and 87% of the predicted fraction unbounded in plasma (Fup) values were 1- to 3-fold of empirical data for 441 compounds. The r2 (coefficient of determination) of predicted Cmax (maximum plasma concentration) and AUC (Area Under Curve) values versus the corresponding empirical values from oral, inhalation and dermal exposures ranged from 0.04 to 0.92. Among the three exposures, the highest r2 values, ranging from 0.80 to 0.92, were observed for oral exposure predictions, where 88% of the compounds had 1- to 10-fold differences between predicted and empirical values for Cmax and AUC. The predicted plasma Css (steady-state plasma concentration) values were consistent with those Css values calculated by in vitro-to-in vivo extrapolation (IVIVE) approaches using experimental parameters. Based on the evaluation results, GastroPlus™ can be used as a QSAR/PBPK tool for toxicokinetic parameter predictions.


Subject(s)
Software , Toxicokinetics , Administration, Inhalation , Administration, Oral , Administration, Topical , Animals , Area Under Curve , Humans , Pharmaceutical Preparations/blood , Quantitative Structure-Activity Relationship
2.
Water Res ; 45(3): 1463-71, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21112604

ABSTRACT

(Benzo)triazoles are distributed throughout the environment, mainly in water compartments, because of their wide use in industry where they are employed in pharmaceutical, agricultural and deicing products. They are hazardous chemicals that adversely affect humans and other non-target species, and are on the list of substances of very high concern (SVHC) in the new European regulation of chemicals - REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances). Thus there is a vital need for further investigations to understand the behavior of these compounds in biota and the environment. In such a scenario, physico-chemical properties like aqueous solubility, hydrophobicity, vapor pressure and melting point can be useful. However, the limited availability and the high cost of lab testing prevents the acquisition of necessary experimental data that industry must submit for the registration of these chemicals. In such cases a preliminary analysis can be made using Quantitative Structure-Property Relationships (QSPR) models. For such an analysis, we propose Multiple Linear Regression (MLR) models based on theoretical molecular descriptors selected by Genetic Algorithm (GA). Training and prediction sets were prepared a priori by splitting the available experimental data, which were then used to derive statistically robust and predictive (both internally and externally) models. These models, after verification of their structural applicability domain (AD), were used to predict the properties of a total of 351 compounds, including those in the REACH preregistration list. Finally, Principal Component Analysis was applied to the predictions to rank the environmental partitioning properties (relevant for leaching and volatility) of new and untested (benzo)triazoles within the AD of each model. Our study using this approach highlighted compounds dangerous for the aquatic compartment. Similar analyses using predictions obtained by the EPI Suite and VCCLAB tools are also compared and discussed in this paper.


Subject(s)
Triazoles/chemistry , Water Pollutants, Chemical/chemistry , Models, Theoretical , Molecular Structure , Principal Component Analysis , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...