Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Nat Commun ; 15(1): 2009, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38499531

ABSTRACT

The molecular characteristics of metastatic upper tract urothelial carcinoma (UTUC) are not well understood, and there is a lack of knowledge regarding the genomic and transcriptomic differences between primary and metastatic UTUC. To address these gaps, we integrate whole-exome sequencing, RNA sequencing, and Imaging Mass Cytometry using lanthanide metal-conjugated antibodies of 44 tumor samples from 28 patients with high-grade primary and metastatic UTUC. We perform a spatially-resolved single-cell analysis of cancer, immune, and stromal cells to understand the evolution of primary to metastatic UTUC. We discover that actionable genomic alterations are frequently discordant between primary and metastatic UTUC tumors in the same patient. In contrast, molecular subtype membership and immune depletion signature are stable across primary and matched metastatic UTUC. Molecular and immune subtypes are consistent between bulk RNA-sequencing and mass cytometry of protein markers from 340,798 single cells. Molecular subtypes at the single-cell level are highly conserved between primary and metastatic UTUC tumors within the same patient.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/pathology , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Genomics/methods , Gene Expression Profiling , Transcriptome
2.
Cell Rep Med ; 5(3): 101438, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38401548

ABSTRACT

In early-stage non-small cell lung cancer, the combination of neoadjuvant anti-PD-L1 and subablative stereotactic body radiation therapy (SBRT) is associated with higher rates of major pathologic response compared to anti-PD-L1 alone. Here, we identify a 140-gene set, enriched in genes characteristic of highly proliferating cells, associated with response to the dual therapy. Analysis of on-treatment transcriptome data indicate roles for T and B cells in response. The 140-gene set is associated with disease-free survival when applied to the combined trial arms. This 140-gene set identifies a subclass of tumors in all 7 of The Cancer Genome Atlas tumor types examined. Worse survival is associated with the 140-gene signature in 5 of these tumor types. Collectively, our data support that this 140-gene set, discovered in association with response to combined anti-PD-L1 and SBRT, identifies a clinically aggressive subclass of solid tumors that may be more likely to respond to immunotherapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Progression-Free Survival , Cell Proliferation/genetics
3.
Proc Natl Acad Sci U S A ; 121(8): e2317343121, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38359293

ABSTRACT

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Mice , Animals , Hydrogen Peroxide , Peroxides , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Proteomics , Acetylcysteine/pharmacology , Glucose , Cell Line, Tumor , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics
4.
Nature ; 626(8000): 864-873, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326607

ABSTRACT

Macrophage activation is controlled by a balance between activating and inhibitory receptors1-7, which protect normal tissues from excessive damage during infection8,9 but promote tumour growth and metastasis in cancer7,10. Here we report that the Kupffer cell lineage-determining factor ID3 controls this balance and selectively endows Kupffer cells with the ability to phagocytose live tumour cells and orchestrate the recruitment, proliferation and activation of natural killer and CD8 T lymphoid effector cells in the liver to restrict the growth of a variety of tumours. ID3 shifts the macrophage inhibitory/activating receptor balance to promote the phagocytic and lymphoid response, at least in part by buffering the binding of the transcription factors ELK1 and E2A at the SIRPA locus. Furthermore, loss- and gain-of-function experiments demonstrate that ID3 is sufficient to confer this potent anti-tumour activity to mouse bone-marrow-derived macrophages and human induced pluripotent stem-cell-derived macrophages. Expression of ID3 is therefore necessary and sufficient to endow macrophages with the ability to form an efficient anti-tumour niche, which could be harnessed for cell therapy in cancer.


Subject(s)
Inhibitor of Differentiation Proteins , Kupffer Cells , Neoplasms , Animals , Humans , Mice , Bone Marrow Cells/cytology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , Cell Lineage , Induced Pluripotent Stem Cells/cytology , Inhibitor of Differentiation Proteins/deficiency , Inhibitor of Differentiation Proteins/genetics , Inhibitor of Differentiation Proteins/metabolism , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Kupffer Cells/cytology , Kupffer Cells/immunology , Kupffer Cells/metabolism , Liver/immunology , Liver/pathology , Macrophage Activation , Neoplasm Proteins , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phagocytosis
6.
Nat Commun ; 14(1): 8435, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114518

ABSTRACT

We previously reported the results of a randomized phase II trial (NCT02904954) in patients with early-stage non-small cell lung cancer (NSCLC) who were treated with either two preoperative cycles of the anti-PD-L1 antibody durvalumab alone or combined with immunomodulatory doses of stereotactic radiation (DRT). The trial met its primary endpoint of major pathological response, which was significantly higher following DRT with no new safety signals. Here, we report on the prespecified secondary endpoint of disease-free survival (DFS) regardless of treatment assignment and the prespecified exploratory analysis of DFS in each arm of the trial. DFS at 2 and 3 years across patients in both arms of the trial were 73% (95% CI: 62.1-84.5) and 65% (95% CI: 52.5-76.9) respectively. For the exploratory endpoint of DFS in each arm of the trial, three-year DFS was 63% (95% CI: 46.0-80.4) in the durvalumab monotherapy arm compared to 67% (95% CI: 49.6-83.4) in the dual therapy arm. In addition, we report post hoc exploratory analysis of progression-free survival as well as molecular correlates of response and recurrence through high-plex immunophenotyping of sequentially collected peripheral blood and gene expression profiles from resected tumors in both treatment arms. Together, our results contribute to the evolving landscape of neoadjuvant treatment regimens for NSCLC and identify easily measurable potential biomarkers of response and recurrence.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Antibodies, Monoclonal/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Neoadjuvant Therapy , Small Cell Lung Carcinoma/drug therapy , Randomized Controlled Trials as Topic , Clinical Trials, Phase II as Topic
7.
GEN Biotechnol ; 2(2): 133-148, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37928776

ABSTRACT

Dengue is the most common mosquito-borne viral disease that in recent years has become a major international public health concern. Dengue is a tropical neglected disease with increasing global incidences, affecting millions of people worldwide, and without the availability of specific treatments to combat it. The identification of host-target genes essential for the virus life cycle, for which effective modulators may already exist, would provide an alternative path to a rapid drug development of the much needed antidengue agents. For this purpose, we performed the first genome-wide RNAi screen, combining two high-content readouts for dengue virus infection (DENV E infection intensity) and host cell toxicity (host cell stained nuclei), against an arrayed lentiviral-based short hairpin RNA library covering 16,000 genes with a redundancy of at least 5 hairpins per gene. The screen identified 1924 gene candidates in total; of which, 1730 gene candidates abrogated dengue infection, whereas 194 gene candidates were found to enhance its infectivity in HEK293 cells. A first pass clustering analysis of hits revealed a well-orchestrated gene-network dependency on host cell homeostasis and physiology triggering distinct cellular pathways for infectivity, replication, trafficking, and egress; a second analysis revealed a comprehensive gene signature of 331 genes common to hits identified in 28 published RNAi host-viral interaction screens. Taken together, our findings provide novel antiviral molecular targets with the potential for drug discovery and development.

8.
Clin Cancer Res ; 29(15): 2933-2943, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37223924

ABSTRACT

PURPOSE: Patients with neuroendocrine prostate cancer (NEPC) are often managed with immunotherapy regimens extrapolated from small-cell lung cancer (SCLC). We sought to evaluate the tumor immune landscape of NEPC compared with other prostate cancer types and SCLC. EXPERIMENTAL DESIGN: In this retrospective study, a cohort of 170 patients with 230 RNA-sequencing and 104 matched whole-exome sequencing data were analyzed. Differences in immune and stromal constituents, frequency of genomic alterations, and associations with outcomes were evaluated. RESULTS: In our cohort, 36% of the prostate tumors were identified as CD8+ T-cell inflamed, whereas the remaining 64% were T-cell depleted. T-cell-inflamed tumors were enriched in anti-inflammatory M2 macrophages and exhausted T cells and associated with shorter overall survival relative to T-cell-depleted tumors (HR, 2.62; P < 0.05). Among all prostate cancer types in the cohort, NEPC was identified to be the most immune depleted, wherein only 9 out of the 36 total NEPC tumors were classified as T-cell inflamed. These inflamed NEPC cases were enriched in IFN gamma signaling and PD-1 signaling compared with other NEPC tumors. Comparison of NEPC with SCLC revealed that NEPC had poor immune content and less mutations compared with SCLC, but expression of checkpoint genes PD-L1 and CTLA-4 was comparable between NEPC and SCLC. CONCLUSIONS: NEPC is characterized by a relatively immune-depleted tumor immune microenvironment compared with other primary and metastatic prostate adenocarcinoma except in a minority of cases. These findings may inform development of immunotherapy strategies for patients with advanced prostate cancer.


Subject(s)
Carcinoma, Neuroendocrine , Neuroendocrine Tumors , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/metabolism , Carcinoma, Neuroendocrine/pathology , Tumor Microenvironment/genetics
9.
Blood Cancer Discov ; 4(3): 208-227, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36723991

ABSTRACT

The rarity of malignant Hodgkin and Reed Sternberg (HRS) cells in classic Hodgkin lymphoma (cHL) limits the ability to study the genomics of cHL. To circumvent this, our group has previously optimized fluorescence-activated cell sorting to purify HRS cells. Using this approach, we now report the whole-genome sequencing landscape of HRS cells and reconstruct the chronology and likely etiology of pathogenic events leading to cHL. We identified alterations in driver genes not previously described in cHL, APOBEC mutational activity, and the presence of complex structural variants including chromothripsis. We found that high ploidy in cHL is often acquired through multiple, independent chromosomal gains events including whole-genome duplication. Evolutionary timing analyses revealed that structural variants enriched for RAG motifs, driver mutations in B2M, BCL7A, GNA13, and PTPN1, and the onset of AID-driven mutagenesis usually preceded large chromosomal gains. This study provides a temporal reconstruction of cHL pathogenesis. SIGNIFICANCE: Previous studies in cHL were limited to coding sequences and therefore not able to comprehensively decipher the tumor complexity. Here, leveraging cHL whole-genome characterization, we identify driver events and reconstruct the tumor evolution, finding that structural variants, driver mutations, and AID mutagenesis precede chromosomal gains. This article is highlighted in the In This Issue feature, p. 171.


Subject(s)
Hodgkin Disease , Reed-Sternberg Cells , Humans , Reed-Sternberg Cells/pathology , Hodgkin Disease/genetics , Hodgkin Disease/pathology , Flow Cytometry , Evolution, Molecular
10.
Nat Commun ; 14(1): 120, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36624093

ABSTRACT

IRE1α-XBP1 signaling is emerging as a central orchestrator of malignant progression and immunosuppression in various cancer types. Employing a computational XBP1s detection method applied to TCGA datasets, we demonstrate that expression of the XBP1s mRNA isoform predicts poor survival in non-small cell lung cancer (NSCLC) patients. Ablation of IRE1α in malignant cells delays tumor progression and extends survival in mouse models of NSCLC. This protective effect is accompanied by alterations in intratumoral immune cell subsets eliciting durable adaptive anti-cancer immunity. Mechanistically, cancer cell-intrinsic IRE1α activation sustains mPGES-1 expression, enabling production of the immunosuppressive lipid mediator prostaglandin E2. Accordingly, restoring mPGES-1 expression in IRE1αKO cancer cells rescues normal tumor progression. We have developed an IRE1α gene signature that predicts immune cell infiltration and overall survival in human NSCLC. Our study unveils an immunoregulatory role for cancer cell-intrinsic IRE1α activation and suggests that targeting this pathway may help enhance anti-tumor immunity in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Endoribonucleases , Lung Neoplasms , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Endoribonucleases/genetics , Endoribonucleases/metabolism , Lung Neoplasms/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
11.
Cancer Res ; 83(4): 506-520, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36480186

ABSTRACT

Mutagenic processes leave distinct signatures in cancer genomes. The mutational signatures attributed to APOBEC3 cytidine deaminases are pervasive in human cancers. However, data linking individual APOBEC3 proteins to cancer mutagenesis in vivo are limited. Here, we showed that transgenic expression of human APOBEC3G promotes mutagenesis, genomic instability, and kataegis, leading to shorter survival in a murine bladder cancer model. Acting as mutagenic fuel, APOBEC3G increased the clonal diversity of bladder cancer, driving divergent cancer evolution. Characterization of the single-base substitution signature induced by APOBEC3G in vivo established the induction of a mutational signature distinct from those caused by APOBEC3A and APOBEC3B. Analysis of thousands of human cancers revealed the contribution of APOBEC3G to the mutational profiles of multiple cancer types, including bladder cancer. Overall, this study dissects the mutagenic impact of APOBEC3G on the bladder cancer genome, identifying that it contributes to genomic instability, tumor mutational burden, copy-number loss events, and clonal diversity. SIGNIFICANCE: APOBEC3G plays a role in cancer mutagenesis and clonal heterogeneity, which can potentially inform future therapeutic efforts that restrict tumor evolution. See related commentary by Caswell and Swanton, p. 487.


Subject(s)
APOBEC-3G Deaminase , Clonal Evolution , Mutagenesis , Urinary Bladder Neoplasms , Animals , Humans , Mice , APOBEC-3G Deaminase/genetics , APOBEC-3G Deaminase/metabolism , Clonal Evolution/genetics , Cytidine Deaminase/genetics , Cytidine Deaminase/metabolism , Genomic Instability , Minor Histocompatibility Antigens/genetics , Mutagenesis/genetics , Mutagens , Urinary Bladder Neoplasms/genetics
12.
Cell Rep ; 39(1): 110639, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385730

ABSTRACT

To investigate changes in the tumor microenvironment (TME) during lung cancer progression, we interrogate tumors from two chest computed tomography (CT)-defined groups. Pure non-solid (pNS) CT density nodules contain preinvasive/minimally invasive cancers, and solid density nodules contain invasive cancers. Profiling data reveal a dynamic interaction between the tumor and its TME throughout progression. Alterations in genes regulating the extracellular matrix and genes regulating fibroblasts are central at the preinvasive state. T cell-mediated immune suppression is initiated in preinvasive nodules and sustained with rising intensity through progression to invasive tumors. Reduced T cell infiltration of the cancer cell nests is more frequently associated with preinvasive cancers, possibly until tumor evolution leads to a durable, viable invasive phenotype accompanied by more varied and robust immune suppression. Upregulation of immune checkpoints occurs only in the invasive nodules. Throughout progression, an effector immune response is present but is effectively thwarted by the immune-suppressive elements.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/pathology , Adenocarcinoma of Lung/genetics , Humans , Lung Neoplasms/pathology , Neoplasm Invasiveness/pathology , Retrospective Studies , Tumor Microenvironment
13.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35050902

ABSTRACT

BACKGROUNDProstate cancer is multifocal with distinct molecular subtypes. The utility of genomic subtyping has been challenged due to inter- and intrafocal heterogeneity. We sought to characterize the subtype-defining molecular alterations of primary prostate cancer across all tumor foci within radical prostatectomy (RP) specimens and determine the prevalence of collision tumors.METHODSFrom the Early Detection Research Network cohort, we identified 333 prospectively collected RPs from 2010 to 2014 and assessed ETS-related gene (ERG), serine peptidase inhibitor Kazal type 1 (SPINK1), phosphatase and tensin homolog (PTEN), and speckle type BTB/POZ protein (SPOP) molecular status. We utilized dual ERG/SPINK1 immunohistochemistry and fluorescence in situ hybridization to confirm ERG rearrangements and characterize PTEN deletion, as well as high-resolution melting curve analysis and Sanger sequencing to determine SPOP mutation status.RESULTSBased on index focus alone, ERG, SPINK1, PTEN, and SPOP alterations were identified in 47.5%, 10.8%, 14.3%, and 5.1% of RP specimens, respectively. In 233 multifocal RPs with ERG/SPINK1 status in all foci, 139 (59.7%) had discordant molecular alterations between foci. Collision tumors, as defined by discrepant ERG/SPINK1 status within a single focus, were identified in 29 (9.4%) RP specimens.CONCLUSIONInterfocal molecular heterogeneity was identified in about 60% of multifocal RP specimens, and collision tumors were present in about 10%. We present this phenomenon as a model for the intrafocal heterogeneity observed in previous studies and propose that future genomic studies screen for collision tumors to better characterize molecular heterogeneity.FUNDINGEarly Detection Research Network US National Cancer Institute (NCI) 5U01 CA111275-09, Center for Translational Pathology at Weill Cornell Medicine (WCM) Department of Pathology and Laboratory Medicine, US NCI (WCM SPORE in Prostate Cancer, P50CA211024-01), R37CA215040, Damon Runyon Cancer Research Foundation, US MetLife Foundation Family Clinical Investigator Award, Norwegian Cancer Society (grant 208197), and South-Eastern Norway Regional Health Authority (grant 2019016 and 2020063).


Subject(s)
Mutation , Nuclear Proteins/genetics , PTEN Phosphohydrolase/genetics , Prostatic Neoplasms/genetics , RNA, Neoplasm/genetics , Repressor Proteins/genetics , Trypsin Inhibitor, Kazal Pancreatic/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , DNA Mutational Analysis , Gene Rearrangement , Humans , Immunohistochemistry , Male , Nuclear Proteins/biosynthesis , PTEN Phosphohydrolase/biosynthesis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Repressor Proteins/biosynthesis , Retrospective Studies , Trypsin Inhibitor, Kazal Pancreatic/biosynthesis , Tumor Cells, Cultured , Tumor Suppressor Proteins
14.
Cell Rep ; 37(10): 110100, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34879281

ABSTRACT

Older age is a strong risk factor for several diseases, including cancer. The etiology and biology of age-associated differences among cancers are poorly understood. To address this knowledge gap, we aim to delineate differences in tumor molecular characteristics between younger and older patients across a variety of tumor types from The Cancer Genome Atlas. We show that these groups exhibit widespread molecular differences in select tumor types. Our work shows that tumors in younger individuals exhibit a dysregulated molecular aging phenotype and are associated with hallmarks of premature senescence. Additionally, we find that these tumors are enriched for driver gene mutations, resulting in homologous recombination defects. Lastly, we observe a trend toward decreased immune infiltration and function in older patients and find that, immunologically, young tumor tissue resembles aged healthy tissue. Taken together, we find that tumors from young individuals possess unique characteristics that may be leveraged for therapy.


Subject(s)
Aging/genetics , Biomarkers, Tumor/genetics , Genomics , Mutation , Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Aging/immunology , Aging/pathology , Cell Proliferation/genetics , Cellular Senescence/genetics , DNA Mutational Analysis , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Molecular Targeted Therapy , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Precision Medicine , Signal Transduction , Tumor Microenvironment , Young Adult
15.
Front Immunol ; 12: 688493, 2021.
Article in English | MEDLINE | ID: mdl-34621263

ABSTRACT

The cohesin complex plays critical roles in genomic stability and gene expression through effects on 3D architecture. Cohesin core subunit genes are mutated across a wide cross-section of cancers, but not in germinal center (GC) derived lymphomas. In spite of this, haploinsufficiency of cohesin ATPase subunit Smc3 was shown to contribute to malignant transformation of GC B-cells in mice. Herein we explored potential mechanisms and clinical relevance of Smc3 deficiency in GC lymphomagenesis. Transcriptional profiling of Smc3 haploinsufficient murine lymphomas revealed downregulation of genes repressed by loss of epigenetic tumor suppressors Tet2 and Kmt2d. Profiling 3D chromosomal interactions in lymphomas revealed impaired enhancer-promoter interactions affecting genes like Tet2, which was aberrantly downregulated in Smc3 deficient lymphomas. Tet2 plays important roles in B-cell exit from the GC reaction, and single cell RNA-seq profiles and phenotypic trajectory analysis in Smc3 mutant mice revealed a specific defect in commitment to the final steps of plasma cell differentiation. Although Smc3 deficiency resulted in structural abnormalities in GC B-cells, there was no increase of somatic mutations or structural variants in Smc3 haploinsufficient lymphomas, suggesting that cohesin deficiency largely induces lymphomas through disruption of enhancer-promoter interactions of terminal differentiation and tumor suppressor genes. Strikingly, the presence of the Smc3 haploinsufficient GC B-cell transcriptional signature in human patients with GC-derived diffuse large B-cell lymphoma (DLBCL) was linked to inferior clinical outcome and low expression of cohesin core subunits. Reciprocally, reduced expression of cohesin subunits was an independent risk factor for worse survival int DLBCL patient cohorts. Collectively, the data suggest that Smc3 functions as a bona fide tumor suppressor for lymphomas through non-genetic mechanisms, and drives disease by disrupting the commitment of GC B-cells to the plasma cell fate.


Subject(s)
B-Lymphocytes/immunology , Biomarkers, Tumor/genetics , Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , Gene Dosage , Germinal Center/immunology , Haploinsufficiency , Lymphoma, Large B-Cell, Diffuse/genetics , Plasma Cells/immunology , Animals , B-Lymphocytes/metabolism , Biomarkers, Tumor/metabolism , Cell Cycle Proteins/immunology , Cell Cycle Proteins/metabolism , Cell Differentiation , Cells, Cultured , Chondroitin Sulfate Proteoglycans/immunology , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/immunology , Chromosomal Proteins, Non-Histone/metabolism , Coculture Techniques , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Databases, Genetic , Dioxygenases/genetics , Dioxygenases/metabolism , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Germinal Center/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Phenotype , Plasma Cells/metabolism , Transcription, Genetic
16.
Cancer Discov ; 11(4): 900-915, 2021 04.
Article in English | MEDLINE | ID: mdl-33811123

ABSTRACT

Artificial intelligence (AI) is rapidly reshaping cancer research and personalized clinical care. Availability of high-dimensionality datasets coupled with advances in high-performance computing, as well as innovative deep learning architectures, has led to an explosion of AI use in various aspects of oncology research. These applications range from detection and classification of cancer, to molecular characterization of tumors and their microenvironment, to drug discovery and repurposing, to predicting treatment outcomes for patients. As these advances start penetrating the clinic, we foresee a shifting paradigm in cancer care becoming strongly driven by AI. SIGNIFICANCE: AI has the potential to dramatically affect nearly all aspects of oncology-from enhancing diagnosis to personalizing treatment and discovering novel anticancer drugs. Here, we review the recent enormous progress in the application of AI to oncology, highlight limitations and pitfalls, and chart a path for adoption of AI in the cancer clinic.


Subject(s)
Antineoplastic Agents/therapeutic use , Artificial Intelligence/trends , Neoplasms/drug therapy , Precision Medicine/trends , Humans , Medical Oncology , Research
17.
Nat Immunol ; 22(2): 240-253, 2021 02.
Article in English | MEDLINE | ID: mdl-33432228

ABSTRACT

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Gene Dosage , Germinal Center/metabolism , Immunity, Humoral , Lymphoma, B-Cell/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chondroitin Sulfate Proteoglycans/deficiency , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Deletion , Gene Expression Regulation, Neoplastic , Germinal Center/immunology , Germinal Center/pathology , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Cohesins
18.
Nat Commun ; 11(1): 6195, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33273457

ABSTRACT

The prevalence and biological consequences of deleterious germline variants in urothelial cancer (UC) are not fully characterized. We performed whole-exome sequencing (WES) of germline DNA and 157 primary and metastatic tumors from 80 UC patients. We developed a computational framework for identifying putative deleterious germline variants (pDGVs) from WES data. Here, we show that UC patients harbor a high prevalence of pDGVs that truncate tumor suppressor proteins. Deepening somatic loss of heterozygosity in serial tumor samples is observed, suggesting a critical role for these pDGVs in tumor progression. Significant intra-patient heterogeneity in germline-somatic variant interactions results in divergent biological pathway alterations between primary and metastatic tumors. Our results characterize the spectrum of germline variants in UC and highlight their roles in shaping the natural history of the disease. These findings could have broad clinical implications for cancer patients.


Subject(s)
Germ-Line Mutation/genetics , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology , Biological Evolution , Cohort Studies , Genome, Human , Humans , Loss of Heterozygosity/genetics , Neoplasm Staging , Protein Domains , Proteins/chemistry , Proteins/genetics
19.
Clin Cancer Res ; 26(18): 4756-4766, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32641434

ABSTRACT

PURPOSE: We examined cabazitaxel, a novel next-generation taxoid, in patients with metastatic gastric cancer in a multicenter phase II study. PATIENTS AND METHODS: Patients who have progressed on one or more prior therapies for locally advanced, unresectable, or metastatic disease were eligible, and prior taxane therapy was allowed. Taxane-naïve and pretreated cohorts were analyzed independently for efficacy. The primary endpoint for both cohorts was progression-free survival (PFS) using RECIST 1.1, using a Simon's two-stage design (10% significance and 80% power) for both cohorts. Comprehensive molecular annotation included whole exome and bulk RNA sequencing. RESULTS: Fifty-three patients enrolled in the taxane-naïve cohort (Arm A) and 23 patients in the prior-taxane cohort (Arm B), from January 8, 2013, to April 8, 2015: median age 61.7 years (range, 35.5-91.8 years), 66% male, 66% Caucasian. The most common adverse events included neutropenia (17% Arm A and 39% Arm B), fatigue/muscle weakness (13%), and hematuria (12%). In Arm A, the 3-month PFS rate was 28% [95% confidence interval (CI), 17%-42%] and did not meet the prespecified efficacy target. The 3-month PFS rate in Arm B was 35% (95% CI, 16%-57%) and surpassed its efficacy target. HER2 amplification or overexpression was associated with improved disease control (P = 0.003), PFS (P = 0.04), and overall survival (P = 0.002). An M2 macrophage signature was also associated with improved survival (P = 0.031). CONCLUSIONS: Cabazitaxel has modest activity in advanced gastric cancer, including in patients previously treated with taxanes. Her2 amplification/overexpression and M2 high macrophage signature are potential biomarkers for taxane efficacy that warrant further evaluation.


Subject(s)
Adenocarcinoma/drug therapy , Esophageal Neoplasms/drug therapy , Receptor, ErbB-2/genetics , Stomach Neoplasms/drug therapy , Taxoids/administration & dosage , Tumor-Associated Macrophages/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/mortality , Adult , Aged , Aged, 80 and over , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophageal Neoplasms/mortality , Esophagogastric Junction/pathology , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Progression-Free Survival , Receptor, ErbB-2/analysis , Response Evaluation Criteria in Solid Tumors , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Stomach Neoplasms/mortality , Taxoids/adverse effects
20.
Nat Commun ; 11(1): 2213, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32371927

ABSTRACT

Despite infiltrating immune cells having an essential function in human disease and patients' responses to treatments, mechanisms influencing variability in infiltration patterns remain unclear. Here, using bulk RNA-seq data from 46 tissues in the Genotype-Tissue Expression project, we apply cell-type deconvolution algorithms to evaluate the immune landscape across the healthy human body. We discover that 49 of 189 infiltration-related phenotypes are associated with either age or sex (FDR < 0.1). Genetic analyses further show that 31 infiltration-related phenotypes have genome-wide significant associations (iQTLs) (P < 5.0 × 10-8), with a significant enrichment of same-tissue expression quantitative trait loci in suggested iQTLs (P < 10-5). Furthermore, we find an association between helper T cell content in thyroid tissue and a COMMD3/DNAJC1 regulatory variant (P = 7.5 × 10-10), which is associated with thyroiditis in other cohorts. Together, our results identify key factors influencing inter-individual variability of immune infiltration, to provide insights on potential therapeutic targets.


Subject(s)
Gene Expression Profiling/methods , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Immune System/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Adult , Algorithms , Female , Gene Regulatory Networks/genetics , Gene Regulatory Networks/immunology , Genotype , Humans , Immune System/cytology , Immune System/immunology , Male , Middle Aged , Phenotype , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Thyroid Gland/cytology , Thyroid Gland/immunology , Thyroid Gland/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...