Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Ars pharm ; 59(3): 145-151, jul.-sept. 2018. graf, tab
Article in English | IBECS | ID: ibc-177730

ABSTRACT

Objective: The study aimed to verify the hypoglycemic effect of Murraya koenigii (M. koenigii) and Catharanthus roseus (C. roseus) by using various in-vitro techniques. Method: The extracts were studied for their effects on glucose adsorption capacity, in-vitro glucose diffusion, in-vitro amylolysis kinetics and glucose transport across the yeast cells. Results: It was observed that the extracts of M. koenigii and C. roseus adsorbed glucose and the adsorption of glucose increased remarkably with an increase in glucose concentration. There were no significant (p≤0.05) differences between their adsorption capacities. In the amylolysis kinetic experimental model the rate of glucose diffusion was found to be increased with time from 30 to 180 min and both the plant extracts exhibited significant inhibitory effects on the movement of glucose into external solution across the dialysis membrane as compared to control. The extracts also promoted glucose uptake by the yeast cells and the enhancement of glucose uptake was dependent on both the sample and glucose concentration. The extract of M. koenigii exhibited significantly higher (p≤0.05) activity than the extract of C. roseus at all concentrations used in the study. Our report suggests the mechanism(s) for the hypoglycemic effect of M. koenigii and C. roseus. Conclusion: The said effect was observed to be mediated by inhibiting alpha amylase, inhibiting glucose diffusion by adsorbing glucose and by increasing glucose transport across the cell membranes as revealed by in-vitro model of yeast cells. However, these effects need to be affirmed by using different in vivo models and clinical trials


Objetivo: El estudio tuvo como objetivo verificar el efecto hipoglucémico de Murraya koenigii (M. koenigii) y Catharanthus roseus (C. roseus) mediante el uso de diversas técnicas in vitro. Método: Los extractos se estudiaron por sus efectos sobre la capacidad de adsorción de glucosa, la difusión de glucosa in vitro, la cinética de amilolisis in vitro y el transporte de glucosa a través de las células de levadura. Resultados: se observó que los extractos de M. koenigii y C. roseus adsorbieron glucosa y la adsorción de glucosa aumentó notablemente con un aumento en la concentración de glucosa. No hubo diferencias significativas (p≤0.05) entre sus capacidades de adsorción. En el modelo experimental cinético de amilolisis, se encontró que la velocidad de difusión de glucosa aumentaba con el tiempo de 30 a 180 min y ambos extractos de planta exhibían efectos inhibitorios significativos sobre el movimiento de la glucosa hacia la solución externa a través de la membrana de diálisis en comparación con el control. Los extractos también promovieron la absorción de glucosa por las células de levadura y la mejora de la captación de glucosa dependió tanto de la muestra como de la concentración de glucosa. El extracto de M. koenigii exhibió una actividad significativamente mayor (p≤0.05) que el extracto de C. roseus en todas las concentraciones utilizadas en el estudio. Nuestro informe sugiere el mecanismo (s) para el efecto hipoglucemiante de M. koenigii y C. roseus. Conclusión: Se observó que dicho efecto estaba mediado por la inhibición de la alfa amilasa, la inhibición de la difusión de glucosa por la adsorción de glucosa y el aumento del transporte de glucosa a través de las membranas celulares según lo revelado por el modelo in vitro de células de levadura. Sin embargo, estos efectos deben ser afirmados mediante el uso de diferentes modelos in vivo y ensayos clínicos


Subject(s)
Hypoglycemia/drug therapy , Hypoglycemic Agents/analysis , Hypoglycemic Agents/pharmacology , In Vitro Techniques , Murraya/chemistry , Catharanthus/chemistry , Glucose/pharmacology , Plant Extracts/pharmacology , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/pharmacology
2.
Braz. J. Pharm. Sci. (Online) ; 53(4): e00159, 2017. tab, graf
Article in English | LILACS | ID: biblio-889418

ABSTRACT

ABSTRACT The present study was undertaken to verify the hypoglycemic potential of unripe and ripe fruit extracts of Musa sapientum by using various in-vitro techniques, namely glucose adsorption capacity, glucose diffusion, amylolysis kinetics and glucose transport across the yeast cells. The results revealed that the unripe and ripe fruit extracts of Musa sapientum adsorbed glucose and the adsorption of glucose increased remarkably with an increase in glucose concentration. There were no significant (p≤0.05) differences between their adsorption capacities. In the amylolysis kinetic experimental model the rate of glucose diffusion was found to be increased with time from 30 to 180 min and both extracts exhibited significant inhibitory effects on the movement of glucose into external solution across the dialysis membrane as compared to control. The plant extracts also promoted glucose uptake by the yeast cells and enhancement of glucose uptake was dependent on both the sample and glucose concentration. The hypoglycemic effect exhibited by the extracts was observed to be mediated by inhibiting α-amylase, inhibiting glucose diffusion by adsorbing glucose and by increasing glucose transport across the cell membranes as revealed by an in-vitro model of yeast cells.


Subject(s)
Musa sapientum/analysis , Hypoglycemic Agents/adverse effects , Plant Extracts/analysis , Diabetes Mellitus , Fruit/classification , Glucose
3.
Anc Sci Life ; 36(1): 42-47, 2016.
Article in English | MEDLINE | ID: mdl-28182028

ABSTRACT

OBJECTIVE: To verify the utility of isolated fermentative microbes from Woodfordia fruticosa flowers for preparation of Arjunarista formulation and its comparative evaluation with the same formulation prepared by traditional method. METHODOLOGY: In the present technique, isolated colonies of microorganisms from Woodfordia fruticosa (Dhataki) flowers on Saubroad dextrose media were separated and suspended in sterile water. This suspension was aseptically added in previously sterilized mixtures containing all intended ingredients for Arjunarista which was thereafter incubated for 20 days at 37°C to achieve optimal fermentation. The formulation thus obtained was further subjected to various evaluation tests. RESULT: Arjunarista was prepared using a new approach, and in that, isolated microorganisms from the flowers of Woodfordia fruticosa (Dhataki) were used. It was found that the new approach was successful in generating approximately same quantities of alcohol content in comparison with traditional methods which have shown varying concentration of alcoholic content. Moreover, the new process prevents the growth of unwanted microbes thus, optimizing standards for purity and safety of the formulation. CONCLUSION: The formulation prepared by a new procedure showed marked uniformity for different parameters such as alcohol production, total phenol content, total solid content as compared to that prepared by the traditional method. Similarly, the results of thin layer chromatography, high performance thin layer chromatography showed marked uniformity related to quality, safety, efficacy, and reproducibility of the new method as compared to the traditional one. Thus, the modern technique was found to show reproducibility and facilitate easier quality assessment.

SELECTION OF CITATIONS
SEARCH DETAIL
...