Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36838990

ABSTRACT

Ca1-xLaxFeAs2 (CLFA112) belongs to a new family of Fe-based superconductors (FeSCs) and has a unique crystal structure featuring an arsenic zigzag chain layer, which has been proposed to be a possible two-dimensional topological insulator. This suggests that CLFA112 is a potential topological superconductor-a platform to realize Majorana fermions. Up to now, even a clear superconducting (SC) gap in CLFA112 has never been observed, and the SC properties of CLFA112 remain largely elusive. In this letter, we report the results of an atomic-scale investigation of the electronic structure of CLFA112 crystals using low-temperature scanning tunneling microscopy (STM). We revealed four different types of surfaces exhibiting distinct electronic properties, with all surfaces displaying dominating 2 × 1 surface reconstructions. On a Ca/La layer on top of an FeAs layer, a clear SC gap of ~12 mV was observed only at the crevices (vacancies) where the FeAs layer can be directly accessed. Remarkably, the FeAs termination layer displayed a dispersing nematic modulation both in real and q space. We also present peculiar zero-bias conductance peaks for the very As chain layer that is believed to exhibit a topological edge state as well as the influence of La dopants on the As chain layer.

2.
Phys Rev Lett ; 127(21): 217203, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34860097

ABSTRACT

A complex interplay of different energy scales involving Coulomb repulsion, spin-orbit coupling, and Hund's coupling energy in 2D van der Waals (vdW) material produces a novel emerging physical state. For instance, ferromagnetism in vdW charge transfer insulator CrGeTe_{3} provides a promising platform to simultaneously manipulate the magnetic and electrical properties for potential device implementation using few nanometers thick materials. Here, we show a continuous tuning of magnetic and electrical properties of a CrGeTe_{3} single crystal using pressure. With application of pressure, CrGeTe_{3} transforms from a ferromagnetic insulator with Curie temperature T_{C}∼66 K at ambient condition to a correlated 2D Fermi metal with T_{C} exceeding ∼250 K. Notably, absence of an accompanying structural distortion across the insulator-metal transition (IMT) suggests that the pressure induced modification of electronic ground states is driven by electronic correlation furnishing a rare example of bandwidth-controlled IMT in a vdW material.

3.
Sci Rep ; 11(1): 13383, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34183706

ABSTRACT

In order to understand the superconducting gap nature of a [Formula: see text] single crystal with [Formula: see text], in-plane thermal conductivity [Formula: see text], in-plane London penetration depth [Formula: see text], and the upper critical fields [Formula: see text] have been investigated. At zero magnetic field, it is found that no residual linear term [Formula: see text] exists and [Formula: see text] follows a power-law [Formula: see text] (T: temperature) with n = 2.66 at [Formula: see text], supporting nodeless superconductivity. Moreover, the magnetic-field dependence of [Formula: see text]/T clearly shows a shoulder-like feature at a low field region. The temperature dependent [Formula: see text] curves for both in-plane and out-of-plane field directions exhibit clear upward curvatures near [Formula: see text], consistent with the shape predicted by the two-band theory and the anisotropy ratio between the [Formula: see text](T) curves exhibits strong temperature-dependence. All these results coherently suggest that [Formula: see text] is a nodeless, multiband superconductor.

4.
Sci Rep ; 9(1): 16627, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31719566

ABSTRACT

The zero field 53Cr nuclear magnetic resonance was measured at low temperatures to investigate the interactions in the bond-frustrated S = 3/2 Heisenberg helimagnet ZnCr2Se4. A quadratic decrease of the sublattice magnetization was determined from the temperature dependence of the isotropic hyperfine field. We calculated the magnetization using linear spin wave theory for the incommensurate spiral spin order and compared this outcome with experimental results to estimate the coupling constants. The hyperfine fields at Cr and Se ions provide evidences that the spin polarization of Cr ions is transferred to neighboring Se ions due to the covalent bonding between them, resulting in reduced magnetic moment in the Cr ion. This observation indicates that the Jahn-Teller effect, which leads to distortion inducing spin-lattice coupling, is not completely missing in ZnCr2Se4.

5.
Nat Commun ; 9(1): 2139, 2018 05 30.
Article in English | MEDLINE | ID: mdl-29849096

ABSTRACT

Strong interplay of spin and charge/orbital degrees of freedom is the fundamental characteristic of the iron-based superconductors (FeSCs), which leads to the emergence of a nematic state as a rule in the vicinity of the antiferromagnetic state. Despite intense debate for many years, however, whether nematicity is driven by spin or orbital fluctuations remains unsettled. Here, by use of transport, magnetization, and 75As nuclear magnetic resonance (NMR) measurements, we show a striking transformation of the relationship between nematicity and spin fluctuations (SFs) in Na1-xLi x FeAs; For x ≤ 0.02, the nematic transition promotes SFs. In contrast, for x ≥ 0.03, the system undergoes a non-magnetic phase transition at a temperature T0 into a distinct nematic state that suppresses SFs. Such a drastic change of the spin fluctuation spectrum associated with nematicity by small doping is highly unusual, and provides insights into the origin and nature of nematicity in FeSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...