Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 87(1): 013104, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26827306

ABSTRACT

Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

2.
Rev Sci Instrum ; 82(9): 093103, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21974569

ABSTRACT

A temperature tuned light emitting diode (LED) has several advantages over conventional sources for Fourier transform spectroscopy. The large radiation density of LEDs, concentrated in a small spectral region, is ideal for high resolution Fourier transform spectroscopy where a high signal-to-noise (S/N) ratio is desired. A simple, inexpensive LED source leads to a superior performance at high resolutions exceeding that of a tungsten halogen lamp, in the visible region of spectrum.

3.
Phys Rev Lett ; 101(19): 195502, 2008 Nov 07.
Article in English | MEDLINE | ID: mdl-19113282

ABSTRACT

Growth of single crystals of CdSe with oxygen, introduced by stoichiometric control to suppress the formation of native Se and Cd vacancies, generates oxygen centers replacing Cd (O Cd) rather than Se (O Se) as expected. This antisite substitution is unambiguously singled out by the host isotope fine structure of the nearest neighbor (NN) Se atoms in the localized vibrational modes (LVMs) of O Cd. When the stoichiometry control favors the formation of Cd vacancies, three infrared signatures gamma1, gamma2 and gamma3 appear ascribable to the LVMs of O Se in association with a Cd vacancy in the NN position as (O Se-V Cd) centers. Polarization measurements establish the monoclinic Cs symmetry for these centers. As a function of temperature, they display a remarkable two-step symmetry transformation, Cs-->C3v-->Td, due to the dynamic switching of the O Se-V Cd dangling bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...