Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 7(10): e2300036, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37017501

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) is responsible for driving metastasis of multiple cancer types including lung cancer. Peroxisome proliferator-activated receptor (PPAR)-γ, a ligand-activated transcription factor, controls expression of variety of genes involved in EMT. Although several synthetic compounds act as potent full agonists for PPAR-γ, their long term application is restricted due to serious adverse effects. Therefore, partial agonists involving reduced and balanced PPAR-γ activity are more effective and valued. A previous study discerned the efficacy of quercetin and its derivatives to attain favorable stabilization with PPAR-γ. Here this work is extended by synthesizing five novel quercetin derivatives (QDs) namely thiosemicarbazone (QUETSC)) and hydrazones (quercetin isonicotinic acid hydrazone (QUEINH), quercetin nicotinic acid hydrazone (QUENH), quercetin 2-furoic hydrazone (QUE2FH), and quercetin salicyl hydrazone (QUESH)) and their effects are analyzed in modulating EMT in lung cancer cell lines via PPAR-γ partial activation. QDs-treated A549 cells diminish cell proliferation strongly at nanomolar concentration compared to NCI-H460 cells. Of the five screened derivatives, QUETSC, QUE2FH, and QUESH exhibit the property of partial activation as compared to the overexpressive level of rosiglitazone. Consistently, these QDs also suppress EMT process by markedly downregulating the levels of mesenchymal markers (Snail, Slug, and zinc finger E-box binding homeobox 1) and concomitant upregulation of epithelial marker (E-cadherin).

2.
Cancers (Basel) ; 14(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077724

ABSTRACT

Accumulation of missense mutant p53 (mutp53) in cancers promotes malignant progression. DNAJA1, a member of HSP40 (also known as J-domain proteins: JDPs), is shown to prevent misfolded or conformational mutp53 from proteasomal degradation. Given frequent addiction of cancers to oncogenic mutp53, depleting mutp53 by DNAJA1 inhibition is a promising approach for cancer therapy. However, there is no clinically available inhibitor for DNAJA1. Our in silico molecular docking study with a natural compound-derived small molecule library identified a plumbagin derivative, PLIHZ (plumbagin-isoniazid analog), as a potential compound binding to the J domain of DNAJA1. PLIHZ efficiently reduced the levels of DNAJA1 and several conformational mutp53 with minimal impact on DNA contact mutp53 and wild-type p53 (wtp53). An analog, called PLTFBH, which showed a similar activity to PLIHZ in reducing DNAJA1 and mutp53 levels, inhibited migration of cancer cells specifically carrying conformational mutp53, but not DNA contact mutp53, p53 null, and wtp53, which was attenuated by depletion of DNAJA1 or mutp53. Moreover, PLTFBH reduced levels of multiple other HSP40/JDPs with tyrosine 7 (Y7) and/or tyrosine 8 (Y8) but failed to deplete DNAJA1 mutants with alanine substitution of these amino acids. Our study suggests PLTFBH as a potential inhibitor for multiple HSP40/JDPs.

3.
Anticancer Agents Med Chem ; 22(16): 2876-2884, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35331098

ABSTRACT

The interaction of drugs with proteins plays a very important role in the distribution of the drug. Human serum albumin (HSA) is the most abundant protein in the human body, showing great binding characteristics, and has gained a lot of importance pharmaceutically. It plays an essential role in the pharmacokinetics of a number of drugs; hence, several reports are available on the interaction of drugs with HSA. It can bind to cancer drugs; thus, it is crucial to look at the binding characteristics of these drugs with HSA. Herein, we summarize the binding properties of some anti-cancer drugs by specifically looking into the binding site with HSA. The number of drugs binding at the Sudlow's site I situated in subdomain II A is more than the drugs binding at Sudlow's site II.


Subject(s)
Antineoplastic Agents , Serum Albumin, Human , Antineoplastic Agents/pharmacology , Binding Sites , Humans , Molecular Docking Simulation , Protein Binding , Serum Albumin/chemistry , Thermodynamics
4.
Pak J Pharm Sci ; 34(5(Supplementary)): 1995-2002, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34836872

ABSTRACT

To explore complex biological and chemical systems, pharmaceutical research has effectively included several molecular modeling tools into a range of drug development initiatives. Molecular docking methods are widely employed in current drug design to investigate ligand conformations within macromolecular targets' binding sites. This method also estimates the ligand-receptor binding free energy by assessing critical phenomena involved in the intermolecular recognition process. In an attempt, several natural products have been synthesized in our laboratory. All the synthesized compounds containing (6H-Dibenzo[b,d]pyran-6-one) framework were subjected to molecular docking studies for the inhibition of CYP1B1 and BCL2 proteins using Auto Dock Vina software and the interacting amino acid residues were visualized using Discovery Studio, to look into the binding modalities that might influence their anticancer properties. The in silico molecular docking study outcomes showed that all the synthesized compounds having optimum binding energy and have a decent affinity to the active pocket, thus, they may be considered as a respectable inhibitor of CYP1B1 and BCL2 proteins.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Binding Sites , Computer Simulation , Cytochrome P-450 CYP1B1/antagonists & inhibitors , Drug Design , Hydrogen Bonding , Ligands , Models, Molecular , Molecular Conformation , Molecular Docking Simulation , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Receptors, Drug/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...