Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(12): 6471-6483, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466805

ABSTRACT

Nanocarriers have attracted considerable interest due to their prospective applications in the delivery of anticancer medications and their distinct bioactivities. Biogenic nanostructures can be effective nanocarriers for delivering drugs as a consequence of sustainable and biodegradable biomass-derived nanostructures that perform specific functions. In this case, a vanadium oxide (V2O5) and mesoporous carbon@V2O5 (C@V) composite was developed as a possible drug delivery system, and its bioactivities, including antioxidant, antibacterial, and anticancer, were investigated. Doxorubicin (DOX), an anticancer drug, was introduced to the nanoparticles, and the loading and release investigation was conducted. Strong interfacial interactions between mesoporous carbon (MC) and V2O5 nanostructures have been found to improve performance in drug loading and release studies and bioactivities. After incubation, the potent anticancer effectiveness was seen based on C@V nanocomposite. This sample was also utilized to research potential biomedical uses as an antioxidant, antibacterial, and anticancer. The most effective antioxidant, the C@V sample (61.2%), exhibited a higher antioxidant activity than the V-2 sample (44.61%). The C@V sample ultimately attained a high DOX loading efficacy of 88%, in comparison to a pure V2O5 sample (V-2) loading efficacy of 80%. Due to the combination of mesoporous carbon and V2O5, which increases specific surface area and surface sites of action as well as the morphology, it proved that the mesoporous carbon@V2O5 composite (C@V) sample demonstrated greater efficacy.


Subject(s)
Antineoplastic Agents , Nanostructures , Carbon/chemistry , Antioxidants/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Doxorubicin/chemistry , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
Langmuir ; 39(33): 11910-11924, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552874

ABSTRACT

Scientists have investigated the possibility of employing nanomaterials as drug carriers. These nanomaterials can preserve their content and transport it to the target region in the body. In this investigation, we proposed a simple method for developing distinctive, bioderived nanostructures with mesoporous carbon nanoparticles impregnated with tungsten oxide (WO3). Prior to characterizing and encapsulating WO3 with bioderived mesoporous carbon, the anticancer drug doxorubicin (DOX) was added to the nanoparticles and examined loading and release study. The approaches for both nanoparticle production and characterization are discussed in detail. Colloidal qualities of the nanomaterial can be effectively preserved while also allowing transdermal transportation of nanoparticles into the body by forming them into green, reusable, and porous nanostructures. Although the theories of nanoparticles and bioderived carbon each have been studied separately, the combination presents a new route to applications connected to nanomedicine. Furthermore, this sample was used to study exotic biomedical applications, such as antioxidant, antimicrobial, and anticancer activities. The W-3 sample had lower antioxidant activity (44.01%) than the C@W sample (56.34%), which was the most potent. A high DOX entrapment effectiveness of 97% was eventually achieved by the C@W sample, compared to a pure WO3 entrapment efficiency of 91%. It was observed that the Carbon/WO3 composite (C@W) sample showed more efficacy because the mesoporous carbon composition with WO3 increases the average surface area and surface-active locations.


Subject(s)
Nanocomposites , Nanoparticles , Neoplasms , Humans , Drug Carriers/chemistry , Carbon/chemistry , Doxorubicin/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...