Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(39): 34779-34788, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36211029

ABSTRACT

Co-inoculation with beneficial microbes has been suggested as a useful practice for the enhancement of plant growth, nutrient uptake, and soil nutrients. For the first time in Uzbekistan the role of plant-growth-promoting Bacillus endophyticus IGPEB 33 and arbuscular mycorrhizal fungi (AMF) on plant growth, the physiological properties of ginger (Zingiber officinale), and soil enzymatic activities was studied. Moreover, the coinoculation of B. endophyticus IGPEB 33 and AMF treatment significantly increased the plant height by 81%, leaf number by 70%, leaf length by 82%, and leaf width by 40% compared to the control. B. endophyticus IGPEB 33 individually increased plant height significantly by 51%, leaf number by 56%, leaf length by 67%, and leaf width by 27% as compared to the control treatment. Compared to the control, B. endophyticus IGPEB 33 and AMF individually significantly increased chlorophyll a by 81-58%, chlorophyll b by 68-37%, total chlorophyll by 74-53%, and carotenoid content by 67-55%. However, combination of B. endophyticus IGPEB 33 and AMF significantly increased chlorophyll a by 86%, chlorophyll b by 72%, total chlorophyll by 82%, and carotenoid content by 83% compared to the control. Additionally, plant-growth-promoting B. endophyticus IGPEB 33 and AMF inoculation improved soil nutrients and soil enzyme activities compared to the all treatments. Co-inoculation with plant-growth-promoting B. endophyticus and AMF could be an alternative for the production of ginger that is more beneficial to soil nutrient deficiencies. We suggest that a combination of plant-growth-promoting B. endophyticus and AMF inoculation could be a more sustainable and eco-friendly approach in a nutrient-deficient soil.

2.
J Therm Anal Calorim ; 147(20): 11345-11362, 2022.
Article in English | MEDLINE | ID: mdl-35401035

ABSTRACT

The current study emphasizes on the influence of nonedible, easily accessible Undi ester blended diesel in single-cylinder, four-stroke, naturally aspirated, direct-injection variable compression ratio diesel engine. All tests were accomplished by varying volumetric proportions of Undi methyl ester (UME) and Undi ethyl ester by 10%, 20%, 30%, 40%, and 50% and compression ratio (CR) from 16:1-20:1. The Undi esters consolidation to diesel, especially enhances brake thermal efficiency (BTE) and decreases brake specific energy consumption (BSEC) of the engine. In comparison with Diesel, ester fuel blends produce lower unburnt hydrocarbons (UHC), carbon monoxide (CO), and particulate matter (PM) emissions with the cost of higher oxides of nitrogen (NOX). With the increase in compression ratio from 16 to 20. All Undi ethyl ester diesel blends have on an average of 1.44% slightly improved brake thermal efficiency, 1.41% lower brake specific fuel consumption and it emits comparatively on an average 7.90% lesser carbon monoxide, 7.21% lower unburnt hydrocarbon, 0.59% lower particulate matter and 1.94% higher oxides of nitrogen emission than UME diesel blends with an increment in CR from 16 to 20. In addition, ester blends showed higher maximum In-cylinder pressure and heat release rate than commercial diesel. Undi ethyl ester blends show 0.82%, 1.08% on an average higher maximum In-cylinder pressure and heat release rate than UME Diesel blends when CR increased from 16 to 20. Undi ester Diesel blends are found to be utmost substitute to commercial diesel fuel in all features such as combustion, performance and emissions characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...