Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 944: 173857, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38871333

ABSTRACT

Spatiotemporal monitoring of pesticide residues in river water is urgently needed due to its negative environmental and human health consequences. The present study is to investigate the occurrence of multiclass pesticide residue in the surface water of the Feni River, Bangladesh, using an optimized salting-out assisted liquid-liquid microextraction (SALLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The optimized SALLME method was developed and validated following the SANTE/11312/2021 guidelines. A total of 42 water samples were collected and analyzed to understand the spatiotemporal distribution of azoxystrobin (AZ), buprofezin (BUP), carbofuran (CAR), pymetrozine (PYM), dimethoate (DMT), chlorantraniliprole (CLP), and difenoconazole (DFN). At four spike levels (n = 5) of 20, 40, 200, and 400 µg/L, the recovery percentages were satisfactory, ranging between 71.1 % and 107.0 % (RSD ≤13.8 %). The residues ranged from below the detection level (BDL) to 14.5 µg/L. The most frequently detected pesticide was DMT (100 %), followed by CLP (52.3809-57.1429), CAR (4.7619-14.2867), and PYM (4.7619-9.5238). However, AZ and BUP were below the detection limit in the analyzed samples of both seasons. Most pesticides and the highest concentrations were detected in March 2023, while the lowest concentrations were present in August 2023.Furthermore, ecological risk assessment based on the general-case scenario (RQm) and worst-case scenario (RQex) indicated a high (RQ > 1) risk to aquatic organisms, from the presence of PYM and CLP residue in river water. Human health risk via dietary exposure was estimated using the hazard quotient (HQ). Based on the detected residues, the HQ (<1) value indicated no significant health risk. This report provides the first record of pesticide residue occurrences scenario and their impact on the river environment of Bangladesh.


Subject(s)
Environmental Monitoring , Pesticide Residues , Rivers , Water Pollutants, Chemical , Bangladesh , Water Pollutants, Chemical/analysis , Rivers/chemistry , Pesticide Residues/analysis , Risk Assessment , Humans , Tandem Mass Spectrometry , Chromatography, Liquid , Spatio-Temporal Analysis , Liquid Phase Microextraction
2.
Food Chem ; 445: 138741, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38364498

ABSTRACT

The aim of the study was to develop a modified QuEChERS method coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the simultaneous determination of five multi-class pesticides in country beans collected from Dhaka, Bangladesh. Pesticides were extracted using ACN, and to minimize the co-extraction matrix, optimized d-SPE cleanup was done using sorbents (GCB, PSA, and C18). In the calibration range, the method showed excellent linearity with a correlation coefficient of R2 ≥ 0.9990 both in solvent- and matrix-matched calibration. For the selected pesticides, average recoveries (at four spiking levels (n = 5) of 10, 20, 100, and 200 µg/kg) of 70-100 % were achieved with relative standard deviations (RSDs) ≤ 9.5 %. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.3333 to 1.3333 µg/kg and 1.0 to 4.0 µg/kg, respectively. The dietary risk assessment, in terms of hazard quotient (HQ), was calculated to assess consumers' health risks.


Subject(s)
Pesticide Residues , Pesticides , Pesticide Residues/analysis , Chromatography, Liquid/methods , Bangladesh , Tandem Mass Spectrometry/methods , Pesticides/analysis , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...