Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Digit Imaging ; 36(5): 2100-2112, 2023 10.
Article in English | MEDLINE | ID: mdl-37369941

ABSTRACT

The COVID-19 pandemic has been adversely affecting the patient management systems in hospitals around the world. Radiological imaging, especially chest x-ray and lung Computed Tomography (CT) scans, plays a vital role in the severity analysis of hospitalized COVID-19 patients. However, with an increasing number of patients and a lack of skilled radiologists, automated assessment of COVID-19 severity using medical image analysis has become increasingly important. Chest x-ray (CXR) imaging plays a significant role in assessing the severity of pneumonia, especially in low-resource hospitals, and is the most frequently used diagnostic imaging in the world. Previous methods that automatically predict the severity of COVID-19 pneumonia mainly focus on feature pooling from pre-trained CXR models without explicitly considering the underlying human anatomical attributes. This paper proposes an anatomy-aware (AA) deep learning model that learns the generic features from x-ray images considering the underlying anatomical information. Utilizing a pre-trained model and lung segmentation masks, the model generates a feature vector including disease-level features and lung involvement scores. We have used four different open-source datasets, along with an in-house annotated test set for training and evaluation of the proposed method. The proposed method improves the geographical extent score by 11% in terms of mean squared error (MSE) while preserving the benchmark result in lung opacity score. The results demonstrate the effectiveness of the proposed AA model in COVID-19 severity prediction from chest X-ray images. The algorithm can be used in low-resource setting hospitals for COVID-19 severity prediction, especially where there is a lack of skilled radiologists.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , COVID-19/diagnostic imaging , Pandemics , X-Rays , SARS-CoV-2 , Pneumonia/diagnosis
2.
IEEE J Biomed Health Inform ; 25(7): 2595-2603, 2021 07.
Article in English | MEDLINE | ID: mdl-33373309

ABSTRACT

Listening to lung sounds through auscultation is vital in examining the respiratory system for abnormalities. Automated analysis of lung auscultation sounds can be beneficial to the health systems in low-resource settings where there is a lack of skilled physicians. In this work, we propose a lightweight convolutional neural network (CNN) architecture to classify respiratory diseases from individual breath cycles using hybrid scalogram-based features of lung sounds. The proposed feature-set utilizes the empirical mode decomposition (EMD) and the continuous wavelet transform (CWT). The performance of the proposed scheme is studied using a patient independent train-validation-test set from the publicly available ICBHI 2017 lung sound dataset. Employing the proposed framework, weighted accuracy scores of 98.92% for three-class chronic classification and 98.70% for six-class pathological classification are achieved, which outperform well-known and much larger VGG16 in terms of accuracy by absolute margins of 1.10% and 1.11%, respectively. The proposed CNN model also outperforms other contemporary lightweight models while being computationally comparable.


Subject(s)
Respiratory Sounds , Wavelet Analysis , Auscultation , Humans , Lung , Neural Networks, Computer
3.
Comput Biol Med ; 102: 211-220, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30170769

ABSTRACT

Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.


Subject(s)
Electrooculography/methods , Polysomnography/methods , Signal Processing, Computer-Assisted , Sleep Stages , Adult , Algorithms , Electroencephalography/methods , Entropy , Female , Humans , Machine Learning , Male , Models, Statistical , Regression Analysis , Support Vector Machine , Wavelet Analysis , Young Adult
4.
Comput Methods Programs Biomed ; 140: 201-210, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28254077

ABSTRACT

BACKGROUND AND OBJECTIVE: Automatic sleep staging is essential for alleviating the burden of the physicians of analyzing a large volume of data by visual inspection. It is also a precondition for making an automated sleep monitoring system feasible. Further, computerized sleep scoring will expedite large-scale data analysis in sleep research. Nevertheless, most of the existing works on sleep staging are either multichannel or multiple physiological signal based which are uncomfortable for the user and hinder the feasibility of an in-home sleep monitoring device. So, a successful and reliable computer-assisted sleep staging scheme is yet to emerge. METHODS: In this work, we propose a single channel EEG based algorithm for computerized sleep scoring. In the proposed algorithm, we decompose EEG signal segments using Ensemble Empirical Mode Decomposition (EEMD) and extract various statistical moment based features. The effectiveness of EEMD and statistical features are investigated. Statistical analysis is performed for feature selection. A newly proposed classification technique, namely - Random under sampling boosting (RUSBoost) is introduced for sleep stage classification. This is the first implementation of EEMD in conjunction with RUSBoost to the best of the authors' knowledge. The proposed feature extraction scheme's performance is investigated for various choices of classification models. The algorithmic performance of our scheme is evaluated against contemporary works in the literature. RESULTS: The performance of the proposed method is comparable or better than that of the state-of-the-art ones. The proposed algorithm gives 88.07%, 83.49%, 92.66%, 94.23%, and 98.15% for 6-state to 2-state classification of sleep stages on Sleep-EDF database. Our experimental outcomes reveal that RUSBoost outperforms other classification models for the feature extraction framework presented in this work. Besides, the algorithm proposed in this work demonstrates high detection accuracy for the sleep states S1 and REM. CONCLUSION: Statistical moment based features in the EEMD domain distinguish the sleep states successfully and efficaciously. The automated sleep scoring scheme propounded herein can eradicate the onus of the clinicians, contribute to the device implementation of a sleep monitoring system, and benefit sleep research.


Subject(s)
Automation , Electroencephalography/methods , Sleep Stages/physiology , Adult , Aged , Empirical Research , Female , Humans , Male , Middle Aged , Young Adult
5.
J Neurosci Methods ; 271: 107-18, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27456762

ABSTRACT

BACKGROUND: Automatic sleep scoring is essential owing to the fact that conventionally a large volume of data have to be analyzed visually by the physicians which is onerous, time-consuming and error-prone. Therefore, there is a dire need of an automated sleep staging scheme. NEW METHOD: In this work, we decompose sleep-EEG signal segments using tunable-Q factor wavelet transform (TQWT). Various spectral features are then computed from TQWT sub-bands. The performance of spectral features in the TQWT domain has been determined by intuitive and graphical analyses, statistical validation, and Fisher criteria. Random forest is used to perform classification. Optimal choices and the effects of TQWT and random forest parameters have been determined and expounded. RESULTS: Experimental outcomes manifest the efficacy of our feature generation scheme in terms of p-values of ANOVA analysis and Fisher criteria. The proposed scheme yields 90.38%, 91.50%, 92.11%, 94.80%, 97.50% for 6-stage to 2-stage classification of sleep states on the benchmark Sleep-EDF data-set. In addition, its performance on DREAMS Subjects Data-set is also promising. COMPARISON WITH EXISTING METHODS: The performance of the proposed method is significantly better than the existing ones in terms of accuracy and Cohen's kappa coefficient. Additionally, the proposed scheme gives high detection accuracy for sleep stages non-REM 1 and REM. CONCLUSIONS: Spectral features in the TQWT domain can discriminate sleep-EEG signals corresponding to various sleep states efficaciously. The proposed scheme will alleviate the burden of the physicians, speed-up sleep disorder diagnosis, and expedite sleep research.


Subject(s)
Algorithms , Decision Support Techniques , Electroencephalography/methods , Pattern Recognition, Automated/methods , Sleep Stages , Wavelet Analysis , Adult , Aged , Analysis of Variance , Brain/physiology , Female , Humans , Male , Middle Aged , Sleep Stages/physiology , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...