Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38082570

ABSTRACT

There is a paucity of data regarding the safety of magnetic resonance imaging (MRI) in patients with abandoned epicardial leads. Few studies have reported temperature rises up to 76 °C during MRI at 1.5 T in gel phantoms implanted with epicardial leads; however, lead trajectories used in these experiments were not clinically relevant. This work reports patient-specific RF heating of both capped and uncapped abandoned epicardial lead configurations during MRI at both 1.5 T and 3 T field strengths. We found that leads routed along realistic, patient-derived trajectories generated substantially lower RF heating than the previously reported worst-case phantom experiments. We also found that MRI at the head imaging landmark leads to substantially lower RF heating compared to MRI at the chest or abdomen landmarks at both 1.5 T and 3 T. Our results suggest that patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.Clinical Relevance- Patients with abandoned epicardial leads may safely undergo MRI for head imaging, but caution is warranted during chest and abdominal imaging.


Subject(s)
Heating , Prostheses and Implants , Humans , Phantoms, Imaging , Temperature , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods
2.
Article in English | MEDLINE | ID: mdl-38082747

ABSTRACT

Deep brain stimulation (DBS) has proven to be an effective treatment for Parkinson's disease and other brain disorders. The procedure often involves implanting two elongated leads aimed at specific brain nuclei in both the left and right hemispheres. However, evaluating the safety of MRI in patients with such implants has only been done on an individual lead basis, ignoring the possibility of crosstalk between the leads. This study evaluates the impact of crosstalk on power deposition at the lead tip through numerical simulation and phantom experiments. We used CT images to obtain patient-specific lead trajectories and compared the power deposition at the lead tip in cases with bilateral and unilateral DBS implants. Our results indicate that the RF power deposition at the lead tip can vary by up to 6-fold when two DBS leads are present together compared to when only one lead is present. Experimental measurements in a simplified case of two lead-only DBS systems confirmed the existence of crosstalk.Clinical Relevance-Our results indicate that RF heating of implanted leads during MRI can be affected by the presence of another lead in the body, which may increase or decrease the power deposition in the tissue depending on the position and configuration of the leads.


Subject(s)
Deep Brain Stimulation , Heating , Humans , Prostheses and Implants , Magnetic Resonance Imaging/methods , Computer Simulation
3.
Article in English | MEDLINE | ID: mdl-38082837

ABSTRACT

The interaction between an active implantable medical device and magnetic resonance imaging (MRI) radiofrequency (RF) fields can cause excessive tissue heating. Existing methods for predicting RF heating in the presence of an implant rely on either extensive phantom experiments or electromagnetic (EM) simulations with varying degrees of approximation of the MR environment, the patient, or the implant. On the contrary, fast MR thermometry techniques can provide a reliable real-time map of temperature rise in the tissue in the vicinity of conductive implants. In this proof-of-concept study, we examined whether a machine learning (ML) based model could predict the temperature increase in the tissue near the tip of an implanted lead after several minutes of RF exposure based on only a few seconds of experimentally measured temperature values. We performed phantom experiments with a commercial deep brain stimulation (DBS) system to train a fully connected feedforward neural network (NN) to predict temperature rise after ~3 minutes of scanning at a 3 T scanner using only data from the first 5 seconds. The NN effectively predicted ΔTmax-R2 = 0.99 for predictions in the test dataset. Our model also showed potential in predicting RF heating for other various scenarios, including a DBS system at a different field strength (1.5 T MRI, R2 = 0.87), different field polarization (1.2 T vertical MRI, R2 = 0.79), and an unseen implant (cardiac leads at 1.5 T MRI, R2 = 0.91). Our results indicate great potential for the application of ML in combination with fast MR thermometry techniques for rapid prediction of RF heating for implants in various MR environments.Clinical Relevance- Machine learning-based algorithms can potentially enable rapid prediction of MRI-induced RF heating in the presence of unknown AIMDs in various MR environments.


Subject(s)
Heating , Prostheses and Implants , Humans , Temperature , Phantoms, Imaging , Magnetic Resonance Imaging/methods
4.
Article in English | MEDLINE | ID: mdl-38083021

ABSTRACT

Advances in low-field magnetic resonance imaging (MRI) are making imaging more accessible without significant losses in image quality. In addition to being more cost-effective and easier to place without as much needed infrastructure, it has been publicized that the lower field strengths make MRI safer for patients with implants. To test this claim, we conducted a total of 368 simulations with wires of various lengths and geometries in a gel phantom during radiofrequency (RF) exposure at 23 MHz and 63.6 MHz (corresponding to MRI at 0.55 T and 1.5 T). Our results showed that heating in the gel around wire tips could be higher in certain cases at 0.55 T. To examine the impact on real patients, we simulated two models of patients with deep brain stimulation (DBS) implants of different lengths. These simulations provide quantitative evidence that low-field MRI is not always safer, and this paper serves to illustrate some of the basic principles involved in RF heating of elongated implants in MRI environments.Clinical Relevance- This paper illustrates the physical concepts of resonance and inductive coupling in RF heating during MRI scanning with implants through systematic simulations and discusses the impact of these principles in practice.


Subject(s)
Deep Brain Stimulation , Humans , Heating , Hot Temperature , Prostheses and Implants , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods
5.
Article in English | MEDLINE | ID: mdl-38083480

ABSTRACT

Radiofrequency (RF) induced tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during magnetic resonance imaging (MRI), hindering routine protocols for patients. Known factors that contribute to variations in the magnitude of RF heating across patients include the implanted lead's trajectory and its orientation with respect to the MRI electric fields. Currently, there are no consistent requirements for surgically implanting the extracranial portion of the DBS lead. Recent studies have shown that incorporating concentric loops in the extracranial trajectory of the lead can reduce RF heating, but the optimal positioning of the loop is unknown. In this study, we evaluated RF heating of 77 unique lead trajectories to determine how different characteristics of the trajectory affect RF heating during MRI at 3 T. We performed phantom experiments with commercial DBS systems from two manufacturers to determine how consistently modifying the lead trajectory mitigates RF heating. We also presented the first surgical implementation of these modified trajectories in patients. Low-heating trajectories included small concentric loops near the surgical burr hole which were readily implemented during the surgical procedure; these trajectories generated nearly a 2-fold reduction in RF heating compared to unmodified trajectories.Clinical Relevance- Surgically modifying the DBS lead trajectory can be a cost-effective strategy for reducing RF-induced heating during MRI at 3 T.


Subject(s)
Deep Brain Stimulation , Humans , Heating , Prostheses and Implants , Magnetic Resonance Imaging/methods , Phantoms, Imaging
6.
J Neurosurg ; : 1-12, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37948679

ABSTRACT

OBJECTIVE: Radiofrequency (RF) tissue heating around deep brain stimulation (DBS) leads is a well-known safety risk during MRI, resulting in strict imaging guidelines and limited allowable protocols. The implanted lead's trajectory and orientation with respect to the MRI electric fields contribute to variations in the magnitude of RF heating across patients. Currently, there are no surgical requirements for implanting the extracranial portion of the DBS lead, resulting in substantial variations in clinical lead trajectories and consequently RF heating. Recent studies have shown that incorporating concentric loops in the extracranial lead trajectory can reduce RF heating. However, optimal positioning of the loops and the quantitative benefit of trajectory modification in terms of added safety margins during MRI remain unknown. In this study, the authors systematically evaluated the characteristics of DBS lead trajectories that minimize RF heating during 3T MRI to develop the best surgical practices for safe access to postoperative MRI, and they present the first surgical implementation of these modified trajectories. METHODS: The authors performed experiments to assess the maximum temperature increase of 244 distinct lead trajectories. They investigated the effect of the position, number, and size of the concentric loops on the skull. Experiments were performed in an anthropomorphic phantom implanted with a commercial DBS system, and RF exposure was generated by applying a high specific absorption rate sequence (B1+rms = 2.7 µT). The authors conducted test-retest experiments to assess the reliability of measurements. Additionally, they evaluated the effect of imaging landmarks and perturbations to the DBS device configuration on the efficacy of low-heating trajectories. Finally, two neurosurgeons implanted the recommended modified trajectories in patients, and the authors characterized their RF heating in comparison with unmodified trajectories. RESULTS: The maximum temperature increase ranged from 0.09°C to 7.34°C. The authors found that increasing the number of loops and positioning them closer to the surgical burr hole, particularly for the contralateral lead, substantially reduced RF heating. These trajectory modifications were easily incorporated during the surgical procedure and resulted in a threefold reduction in RF heating. CONCLUSIONS: Surgically modifying the extracranial portion of the DBS lead trajectory can substantially reduce RF heating during 3T MRI. The authors' results indicate that simple adjustments to the lead's configuration, such as small, concentric loops near the burr hole, can be readily adopted during DBS lead implantation to improve patient safety during MRI.

7.
Diagnostics (Basel) ; 13(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37685385

ABSTRACT

This study focused on the potential risks of radiofrequency-induced heating of cardiac implantable electronic devices (CIEDs) in children and adults with epicardial and endocardial leads of varying lengths during cardiothoracic MRI scans. Infants and young children are the primary recipients of epicardial CIEDs, though the devices have not been approved as MR conditional by the FDA due to limited data, leading to pediatric hospitals either refusing the MRI service to most pediatric CIED patients or adopting a scan-all strategy based on results from adult studies. The study argues that risk-benefit decisions should be made on an individual basis. We used 120 clinically relevant epicardial and endocardial device configurations in adult and pediatric anthropomorphic phantoms to determine the temperature rise during RF exposure at 1.5 T. The results showed that there was significantly higher RF heating of epicardial leads than endocardial leads in the pediatric phantom, but not in the adult phantom. Additionally, body size and lead length significantly affected RF heating, with RF heating up to 12 °C observed in models based on younger children with short epicardial leads. The study provides evidence-based knowledge on RF-induced heating of CIEDs and highlights the importance of making individual risk-benefit decisions when assessing the potential risks of MRI scans in pediatric CIED patients.

8.
Magn Reson Med ; 90(6): 2510-2523, 2023 12.
Article in English | MEDLINE | ID: mdl-37526134

ABSTRACT

PURPOSE: After epicardial cardiac implantable electronic devices are implanted in pediatric patients, they become ineligible to receive MRI exams due to an elevated risk of RF heating. We investigated whether simple modifications in the trajectories of epicardial leads could substantially and reliably reduce RF heating during MRI at 1.5 T, with benefits extending to abandoned leads. METHODS: Electromagnetic simulations were performed to assess RF heating of two common 35-cm epicardial lead trajectories exhibiting different degrees of coupling with MRI incident electric fields. Experiments in anthropomorphic phantoms implanted with commercial cardiac implantable electronic devices confirmed the findings. Both electromagnetic simulations and experimental measurements were performed using head-first and feet-first positioning and various landmarks. Transfer function approach was used to assess the performance of suggested modifications in realistic body models. RESULTS: Simulations (head-first, chest landmark) of a 35-cm epicardial lead with a trajectory where the excess length of the lead was looped and placed on the inferior surface of the heart showed an 87-fold reduction in the 0.1 g-averaged specific absorption rate compared with the lead where the excess length was looped on the anterior surface. Repeated experiments with a commercial epicardial device confirmed this. For fully implanted systems following low-specific absorption rate trajectories, there was a 16-fold reduction in the average temperature rise and a 28-fold reduction for abandoned leads. The transfer function method predicted a 7-fold reduction in the RF heating in 336 realistic scenarios. CONCLUSION: Surgical modification of epicardial lead trajectory can substantially reduce RF heating at 1.5 T, with benefits extending to abandoned leads.


Subject(s)
Heating , Prostheses and Implants , Humans , Child , Heart , Temperature , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radio Waves , Hot Temperature
9.
Stereotact Funct Neurosurg ; 101(1): 47-59, 2023.
Article in English | MEDLINE | ID: mdl-36529124

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is a common treatment for a variety of neurological and psychiatric disorders. Recent studies have highlighted the role of neuroimaging in localizing the position of electrode contacts relative to target brain areas in order to optimize DBS programming. Among different imaging methods, postoperative magnetic resonance imaging (MRI) has been widely used for DBS electrode localization; however, the geometrical distortion induced by the lead limits its accuracy. In this work, we investigated to what degree the difference between the actual location of the lead's tip and the location of the tip estimated from the MRI artifact varies depending on the MRI sequence parameters such as acquisition plane and phase encoding direction, as well as the lead's extracranial configuration. Accordingly, an imaging technique to increase the accuracy of lead localization was devised and discussed. METHODS: We designed and constructed an anthropomorphic phantom with an implanted DBS system following 18 clinically relevant configurations. The phantom was scanned at a Siemens 1.5 Tesla Aera scanner using a T1MPRAGE sequence optimized for clinical use and a T1TSE sequence optimized for research purposes. We varied slice acquisition plane and phase encoding direction and calculated the distance between the caudal tip of the DBS lead MRI artifact and the actual tip of the lead, as estimated from MRI reference markers. RESULTS: Imaging parameters and lead configuration substantially altered the difference in the depth of the lead within its MRI artifact on the scale of several millimeters - with a difference as large as 4.99 mm. The actual tip of the DBS lead was found to be consistently more rostral than the tip estimated from the MR image artifact. The smallest difference between the tip of the DBS lead and the tip of the MRI artifact using the clinically relevant sequence (i.e., T1MPRAGE) was found with the sagittal acquisition plane and anterior-posterior phase encoding direction. DISCUSSION/CONCLUSION: The actual tip of an implanted DBS lead is located up to several millimeters rostral to the tip of the lead's artifact on postoperative MR images. This distance depends on the MRI sequence parameters and the DBS system's extracranial trajectory. MRI parameters may be altered to improve this localization.


Subject(s)
Deep Brain Stimulation , Humans , Deep Brain Stimulation/methods , Artifacts , Electrodes, Implanted , Magnetic Resonance Imaging/methods , Brain/pathology
10.
PLoS One ; 17(12): e0278187, 2022.
Article in English | MEDLINE | ID: mdl-36490249

ABSTRACT

The majority of studies that assess magnetic resonance imaging (MRI) induced radiofrequency (RF) heating of the tissue when active electronic implants are present have been performed in horizontal, closed-bore MRI systems. Vertical, open-bore MRI systems have a 90° rotated magnet and a fundamentally different RF coil geometry, thus generating a substantially different RF field distribution inside the body. Little is known about the RF heating of elongated implants such as deep brain stimulation (DBS) devices in this class of scanners. Here, we conducted the first large-scale experimental study investigating whether RF heating was significantly different in a 1.2 T vertical field MRI scanner (Oasis, Fujifilm Healthcare) compared to a 1.5 T horizontal field MRI scanner (Aera, Siemens Healthineers). A commercial DBS device mimicking 30 realistic patient-derived lead trajectories extracted from postoperative computed tomography images of patients who underwent DBS surgery at our institution was implanted in a multi-material, anthropomorphic phantom. RF heating around the DBS lead was measured during four minutes of high-SAR RF exposure. Additionally, we performed electromagnetic simulations with leads of various internal structures to examine this effect on RF heating. When controlling for RMS B1+, the temperature increase around the DBS lead-tip was significantly lower in the vertical scanner compared to the horizontal scanner (0.33 ± 0.24°C vs. 4.19 ± 2.29°C). Electromagnetic simulations demonstrated up to a 17-fold reduction in the maximum of 0.1g-averaged SAR in the tissue surrounding the lead-tip in the vertical scanner compared to the horizontal scanner. Results were consistent across leads with straight and helical internal wires. Radiofrequency heating and power deposition around the DBS lead-tip were substantially lower in the 1.2 T vertical scanner compared to the 1.5 T horizontal scanner. Simulations with different lead structures suggest that the results may extend to leads from other manufacturers.


Subject(s)
Deep Brain Stimulation , Humans , Deep Brain Stimulation/methods , Radio Waves , Heating , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Hot Temperature
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4014-4017, 2022 07.
Article in English | MEDLINE | ID: mdl-36086095

ABSTRACT

Patients with congenital heart defects, inherited arrhythmia syndromes, and congenital disorders of cardiac conduction often receive a cardiac implantable electronic device (CIED). At least 75% of patients with CIEDs will need magnetic resonance imaging (MRI) during their lifetime. In 2011, the US Food and Drug Administration approved the first MR-conditional CIEDs for patients with endocardial systems, in which leads are passed through the vein and affixed to the endocardium. The majority of children, however, receive an epicardial CIED, where leads are directly sewn to the epicardium. Unfortunately, an epicardial CIED is a relative contraindication to MRI due to the unknown risk of RF heating. In this work, we performed anthropomorphic phantom experiments to investigate differences in RF heating between endocardial and epicardial leads in both pediatric and adult-sized phantoms, where adult endocardial CIED was the control. Clinical Relevance-This work provides a quantitative comparison of MRI RF heating of epicardial and endocardial leads in pediatric and adult populations.


Subject(s)
Defibrillators, Implantable , Pacemaker, Artificial , Adult , Child , Defibrillators, Implantable/adverse effects , Electronics , Endocardium/diagnostic imaging , Heating , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Pericardium/diagnostic imaging
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5000-5003, 2022 07.
Article in English | MEDLINE | ID: mdl-36086119

ABSTRACT

Infants and children with congenital heart defects often receive a cardiac implantable electronic device (CIED). Because transvenous access to the heart is difficult in patients with small veins, the majority of young children receive epicardial CIEDs. Unfortunately, however, once an epicardial CIED is placed, patients are no longer eligible to receive magnetic resonance imaging (MRI) exams due to the unknown risk of MRI-induced radiofrequency (RF) heating of the device. Although many studies have assessed the role of device configuration in RF heating of endocardial CIEDs in adults, such case for epicardial devices in pediatric patients is relatively unexplored. In this study, we evaluated the variation in RF heating of an epicardial lead due to changes in the lateral position and orientation of the implantable pulse generator (IPG). We found that changing the orientation and position of the IPG resulted in a five-fold variation in the RF heating at the lead's tip. Maximum heating was observed when the IPG was moved to a left lateral abdominal position of patient, and minimum heating was observed when the IPG was positioned directly under the heart. Clinical Relevance- This study examines the role of device configuration on MRI-induced RF heating of an epicardial CIED in a pediatric phantom. Results could help pediatric cardiac surgeons to modify device implantation to reduce future risks of MRI in patients.


Subject(s)
Heating , Radio Waves , Adult , Child , Child, Preschool , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Prostheses and Implants
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1863-1866, 2022 07.
Article in English | MEDLINE | ID: mdl-36086639

ABSTRACT

Deep brain stimulation (DBS) is an established yet growing treatment for a range of neurological and psychiatric disorders. Over the last decade, numerous studies have underscored the effect of electrode placement on the clinical outcome of DBS. As a result, imaging is now extensively used for DBS electrode localization, even though the accuracy of different modalities in determining the true coordinates of DBS electrodes is less explored. Postoperative magnetic resonance imaging (MRI) is a gold standard method for DBS electrode localization, however, the geometrical distortion induced by the lead's artifact could limit the accuracy. In this work, we investigated to what degree the difference between the true location of the lead's tip and the location of the tip estimated from the MRI artifact varies depending on the MRI sequence parameters, acquisition plane, phase encoding direction, and the implant"s extracranial trajectory. Clinical Relevance- Results will help researchers and clinicians to estimate the true location of DBS leads and contacts from postoperative MRI scans.


Subject(s)
Deep Brain Stimulation , Deep Brain Stimulation/methods , Electrodes, Implanted , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Postoperative Period
14.
Magn Reson Med ; 87(6): 2933-2946, 2022 06.
Article in English | MEDLINE | ID: mdl-35092097

ABSTRACT

PURPOSE: In this study, the effects of RF coupling on the magnitude and spatial patterns of RF-induced heating near multiple wire-like conducting implants (such as simultaneous electrical stimulation of stereoelectroencephalography electrodes) during MRI were assessed. METHODS: Simulations and experimental measurements of RF-induced temperature increases near partially immersed wire-like conductors were performed using a phantom with a transmit/receive head coil on a 3T MRI system. The conductors consisted of either a pair of wires or a single simultaneous electrical stimulation of stereoelectroencephalography electrode with multiple contacts, and the locations and lengths of the conductors were varied to study the effect of electromagnetic coupling on RF-induced heating. RESULTS: The temperature increase near a wire within the phantom was dependent not only on its own location and length, but also on the locations and lengths of the other partially immersed wires. In the configurations that were studied, the presence of a second implant could increase the heating near the tip of the conductor by as much as 95%. CONCLUSION: The level of RF-induced heating during an MR scan is affected significantly by RF coupling when more than one wire-like implant is present. In some of the configurations studied, the heating was increased by the presence of a second conductor partially immersed in the phantom. Thus, RF coupling is an important factor to consider in the assessment of safety issues for MRI when multiple implants are present.


Subject(s)
Heating , Radio Waves , Electrodes , Hot Temperature , Magnetic Resonance Imaging , Phantoms, Imaging
15.
Magn Reson Med ; 87(5): 2464-2480, 2022 05.
Article in English | MEDLINE | ID: mdl-34958685

ABSTRACT

PURPOSE: To evaluate the safety of MRI in patients with fragmented retained leads (FRLs) through numerical simulation and phantom experiments. METHODS: Electromagnetic and thermal simulations were performed to determine the worst-case RF heating of 10 patient-derived FRL models during MRI at 1.5 T and 3 T and at imaging landmarks corresponding to head, chest, and abdomen. RF heating measurements were performed in phantoms implanted with reconstructed FRL models that produced highest heating in numerical simulations. The potential for unintended tissue stimulation was assessed through a conservative estimation of the electric field induced in the tissue due to gradient-induced voltages developed along the length of FRLs. RESULTS: In simulations under conservative approach, RF exposure at B1+ ≤ 2 µT generated cumulative equivalent minutes (CEM)43 < 40 at all imaging landmarks at both 1.5 T and 3 T, indicating no thermal damage for acquisition times (TAs) < 10 min. In experiments, the maximum temperature rise when FRLs were positioned at the location of maximum electric field exposure was measured to be 2.4°C at 3 T and 2.1°C at 1.5 T. Electric fields induced in the tissue due to gradient-induced voltages remained below the threshold for cardiac tissue stimulation in all cases. CONCLUSIONS: Simulation and experimental results indicate that patients with FRLs can be scanned safely at both 1.5 T and 3 T with most clinical pulse sequences.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Heart/diagnostic imaging , Heating , Hot Temperature , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Imaging/methods , Phantoms, Imaging
16.
IEEE Trans Electromagn Compat ; 63(5): 1757-1766, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34898696

ABSTRACT

Interaction of an active electronic implant such as a deep brain stimulation (DBS) system and MRI RF fields can induce excessive tissue heating, limiting MRI accessibility. Efforts to quantify RF heating mostly rely on electromagnetic (EM) simulations to assess individualized specific absorption rate (SAR), but such simulations require extensive computational resources. Here, we investigate if a predictive model using machine learning (ML) can predict the local SAR in the tissue around tips of implanted leads from the distribution of the tangential component of the MRI incident electric field, Etan. A dataset of 260 unique patient-derived and artificial DBS lead trajectories was constructed, and the 1 g-averaged SAR, 1gSARmax, at the lead-tip during 1.5 T MRI was determined by EM simulations. Etan values along each lead's trajectory and the simulated SAR values were used to train and test the ML algorithm. The resulting predictions of the ML algorithm indicated that the distribution of Etan could effectively predict 1gSARmax at the DBS lead-tip (R = 0.82). Our results indicate that ML has the potential to provide a fast method for predicting MR-induced power absorption in the tissue around tips of implanted leads such as those in active electronic medical devices.

17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4978-4981, 2021 11.
Article in English | MEDLINE | ID: mdl-34892325

ABSTRACT

Radiofrequency (RF) heating of tissue during magnetic resonance imaging (MRI) is a known safety risk in the presence of active implantable medical devices (AIMDs). As a result, access to MRI is limited for patients with these implants including those with deep brain stimulation (DBS) systems. Numerous factors contribute to excessive RF tissue heating at the DBS lead-tip, most notable being the trajectory of the lead. Phantom studies have demonstrated that looping the extracranial portion of the DBS lead at the surgical burr hole reduces the heating at the lead-tip; however, clinical implementation of this technique is challenging due to surgical constraints. As such, the intended looped trajectory is usually different from what is implanted in patients. To date, no data is available to quantify the extent by which surgical trajectory modification reduces RF heating of DBS leads compared to the typical surgical approach. In this work, we measured RF heating of a commercial DBS system during 3 T MRI, where the trajectory of the lead and extension cable mimicked lead trajectories constructed from postoperative CT images of 13 patients undergoing modified DBS surgery and 2 patients with unmodified trajectories. Two manually created trajectories mimicking typical heating cases seen in the literature were also evaluated. We found that modified lead trajectories reduced the average heating by 3-folds compared to unmodified lead trajectories.Clinical Relevance- This study evaluates the performance of a surgical modification in the routing of DBS leads in reducing RF-induced heating during MRI at 3 T.


Subject(s)
Deep Brain Stimulation , Heating , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Radio Waves
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4982-4985, 2021 11.
Article in English | MEDLINE | ID: mdl-34892326

ABSTRACT

Magnetic Resonance Imaging (MRI) access remains conditional to patients with conductive medical implants, as RF heating generated around the implant during scanning may cause tissue burns. Experiments have been traditionally used to assess this heating, but they are time-consuming and expensive, and in many cases cannot faithfully replicate the in-vivo scenario. Alternatively, ISO TS 10974 outlines a four-tier RF heating assessment approach based on a combination of experiments and full-wave electromagnetic (EM) simulations with varying degrees of complexity. From these, Tier 4 approach relies entirely on EM simulations. There are, however, very few studies validating such numerical models against direct thermal measurements. In this work, we evaluated the agreement between simulated and measured RF heating around wire implants during RF exposure at 63.6 MHz (proton imaging at 1.5 T). Heating was assessed around wire implants with 25 unique trajectories within an ASTM phantom. The root mean square percentage error (RMSPE) of simulated vs. measured RF heating remained <1.6% despite the wide range of observed heating (0.2 °C-53 °C). Our results suggest that good agreement can be achieved between experiments and simulations as long as important experimental features such as characteristics of the MRI RF coil, implant's geometry, position, and trajectory, as well as electric and thermal properties of gel are closely mimicked in simulations.Clinical Relevance- This work validates the application of full-wave EM simulations for modeling and predicting RF heating of conductive wires in an MRI environment, providing researchers with a validated tool to assess MRI safety in patients with implants.


Subject(s)
Heating , Hot Temperature , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Radio Waves
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4986-4989, 2021 11.
Article in English | MEDLINE | ID: mdl-34892327

ABSTRACT

Patients with cardiovascular implantable electronic devices (CIEDs) are often prevented from receiving magnetic resonance imaging (MRI) due to risks associated with radiofrequency (RF) heating of tissue around the implanted leads. Although MR-conditional CIEDs are available, the safety labeling of such devices does not extend to patients with fragmented retained leads (FRLs), where segments of the leads are left in the tissue after the original device is extracted. Unlike intact and isolated leads of CIEDs, FRLs are often bare conductive lead fragments in direct contact with the tissue. No experimental work has been reported that assess RF heating of FRL during MRI thus far. In this work, we performed phantom experiments to measure RF heating of 4 patient-derived FRL models in a gel-based ASTM-like phantom during RF exposure at 64 MHz (proton imaging at 1.5 T) and 123 MHz (proton imaging at 3 T). We found FRL models to generate negligible temperature rise in the gel (∆T<1.84 °C) during a 10-minute scan at both 1.5 T and 3 T. These results are in agreement with previous simulation studies and suggest MRI may be performed safely in patients with fragmented retained leads.


Subject(s)
Heating , Radio Waves , Heart , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Radio Waves/adverse effects
20.
PLoS One ; 16(9): e0257077, 2021.
Article in English | MEDLINE | ID: mdl-34492090

ABSTRACT

Ultra-high field MRI at 7 T can produce much better visualization of sub-cortical structures compared to lower field, which can greatly help target verification as well as overall treatment monitoring for patients with deep brain stimulation (DBS) implants. However, use of 7 T MRI for such patients is currently contra-indicated by guidelines from the device manufacturers due to the safety issues. The aim of this study was to provide an assessment of safety and image quality of ultra-high field magnetic resonance imaging at 7 T in patients with deep brain stimulation implants. We performed experiments with both lead-only and complete DBS systems implanted in anthropomorphic phantoms. RF heating was measured for 43 unique patient-derived device configurations. Magnetic force measurements were performed according to ASTM F2052 test method, and device integrity was assessed before and after experiments. Finally, we assessed electrode artifact in a cadaveric brain implanted with an isolated DBS lead. RF heating remained below 2°C, similar to a fever, with the 95% confidence interval between 0.38°C-0.52°C. Magnetic forces were well below forces imposed by gravity, and thus not a source of concern. No device malfunctioning was observed due to interference from MRI fields. Electrode artifact was most noticeable on MPRAGE and T2*GRE sequences, while it was minimized on T2-TSE images. Our work provides the safety assessment of ultra-high field MRI at 7 T in patients with DBS implants. Our results suggest that 7 T MRI may be performed safely in patients with DBS implants for specific implant models and MRI hardware.


Subject(s)
Deep Brain Stimulation , Image Enhancement , Magnetic Resonance Imaging , Artifacts , Humans , Phantoms, Imaging , Radio Waves , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...