Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Sci Polym Ed ; 35(2): 206-227, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37947007

ABSTRACT

Despite the advancements in bone tissue engineering, the majority of implant failures are caused due to microbial contamination. So, efforts are being made to develop biomaterial with antimicrobial property enhancing the regeneration of damaged bone tissue. In the present study, chitosan-gelatin (CG) scaffolds containing silver-doped hydroxyapatite (AgHAP) nanoparticles at 0.5%, 1.0% and 1.5% (w/v) were fabricated by lyophilization technique. The results confirmed the synthesis of AgHAP nanoparticles and showed interconnected porous structure of the nanocomposite scaffolds with 89%-75% porosity. Similarly, the swelling percentage, degradation behavior and compressive modulus of CG-AgHAP nanocomposite scaffolds were 1666%, 40% and 0.7 MPa, respectively. The developed nanocomposite scaffolds revealed better antimicrobial properties and bioactivity. The cell culture studies showed favorable viability of Wharton's jelly stem cells on CG-AgHAP nanocomposite scaffolds. CAM (chorioallantoic membrane) assay determined the angiogenic potential with better visualization of blood vessels in the CAM area. Hence, the obtained results confirmed that CG-AgHAP3 nanocomposite scaffold was the most suitable for bone tissue engineering applications among all scaffolds.


Subject(s)
Anti-Infective Agents , Chitosan , Nanocomposites , Tissue Engineering/methods , Chitosan/chemistry , Durapatite/chemistry , Tissue Scaffolds/chemistry , Gelatin/chemistry , Silver/chemistry , Bone and Bones , Porosity , Nanocomposites/chemistry
2.
Int J Biol Macromol ; 236: 123813, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36858088

ABSTRACT

Cell-free and cell-loaded constructs are used to bridge the critical-sized bone defect. Oxidative stress at the site of the bone defects is a major interference that slows bone healing. Recently, there has been an increase in interest in enhancing the properties of three-dimensional scaffolds with free radical scavenging materials. Cerium oxide nanoparticles (CNPs) can scavenge free radicals due to their redox-modulating property. In this study, freeze-drying was used to fabricate CG-CNPs nanocomposite scaffolds using gelatin (G), chitosan (C), and cerium oxide nanoparticles. Physico-chemical, mechanical, and biological characterization of CG-CNPs scaffolds were studied. CG-CNPs scaffolds demonstrated better results in terms of physicochemical, mechanical, and biological properties as compared to CG-scaffold. CG-CNPs scaffolds were cyto-friendly to MC3T3-E1 cells studied by performing in-vitro and in-ovo studies. The scaffold's antimicrobial study revealed high inhibition zones against Gram-positive and Gram-negative bacteria. With 79 % porosity, 45.99 % weight loss, 178.25 kPa compressive modulus, and 1.83 Ca/P ratio, the CG-CNP2 scaffold displays the best characteristics. As a result, the CG-CNP2 scaffolds are highly biocompatible and could be applied to repair bone defects.


Subject(s)
Chitosan , Nanoparticles , Tissue Engineering/methods , Chitosan/chemistry , Gelatin/chemistry , Tissue Scaffolds/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Nanoparticles/chemistry , Porosity , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
3.
Int J Biol Macromol ; 236: 123812, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36854368

ABSTRACT

Tissue engineering has emerged as the best alternative to replacing damaged tissue/organs. However, the cost of scaffold materials continues to be a significant obstacle; thus, developing inexpensive scaffolds is strongly encouraged. In this study, cellulose microfibers (C), gelatin (G), egg white (EW), and nanohydroxyapatite (nHA) were assembled into a quaternary scaffold using EDC-NHS crosslinking, followed by freeze-drying method. Cellulose microfibers as a scaffold have only received a limited amount of research due to the absence of an intrinsic three-dimensional structure. Gelatin, more likely to interact chemically with collagen, was used to provide a stable structure to the cellulose microfibers. EW was supposed to provide the scaffold with numerous cell attachment sites. nHA was chosen to enhance the scaffold's bone-bonding properties. Physico-chemical, mechanical, and biological characterization of scaffolds were studied. In-vitro using MG-63 cells and in-ovo studies revealed that all scaffolds were biocompatible. The results of the DPPH assay demonstrate the ability of CGEWnHA to reduce free radicals. The CGEWnHA scaffold exhibits the best properties with 56.84 ± 28.45 µm average pore size, 75 ± 1.4 % porosity, 39.23 % weight loss, 109.19 ± 0.98 kPa compressive modulus, and 1.72 Ca/P ratio. As a result, the constructed CGEWnHA scaffold appears to be a viable choice for BTE applications.


Subject(s)
Apatites , Tissue Engineering , Tissue Engineering/methods , Apatites/chemistry , Tissue Scaffolds/chemistry , Gelatin/chemistry , Cellulose , Porosity , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
4.
Bioengineering (Basel) ; 9(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36550933

ABSTRACT

Bone tissue engineering (BTE) is a promising alternative to repair bone defects using biomaterial scaffolds, cells, and growth factors to attain satisfactory outcomes. This review targets the fabrication of bone scaffolds, such as the conventional and electrohydrodynamic techniques, for the treatment of bone defects as an alternative to autograft, allograft, and xenograft sources. Additionally, the modern approaches to fabricating bone constructs by additive manufacturing, injection molding, microsphere-based sintering, and 4D printing techniques, providing a favorable environment for bone regeneration, function, and viability, are thoroughly discussed. The polymers used, fabrication methods, advantages, and limitations in bone tissue engineering application are also emphasized. This review also provides a future outlook regarding the potential of BTE as well as its possibilities in clinical trials.

5.
Environ Sci Pollut Res Int ; 29(43): 64489-64512, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35864400

ABSTRACT

Solid oxide fuel cells (SOFCs) are emerging as energy conversion devices for large-scale electrical power generation because of their high energy conversion efficiency, excellent ability to minimize air pollution, and high fuel flexibility. In this context, this critical review has focussed on the recent advancements in developing a suitable electrolyte for SOFCs which has been required for the commercialization of SOFC technology after emphasizing the literature from the prior studies. In particular, the significant developments in the field of solid oxide electrolytes for SOFCs, particularly zirconia- and ceria-based electrolytes, have been highlighted as important advancements toward the production of sustainable and clean energy. It has been reported that among various electrolyte materials, zirconia-based electrolytes have the potential to be utilized as the electrolyte in SOFC because of their high thermal stability, non-reducing nature, and high mechanical strength, along with acceptable oxygen ion conductivity. However, some studies have proved that the zirconia-based electrolytes are not suitable for low and intermediate-temperature working conditions because of their poor ionic conductivity to below 850 °C. On the other hand, ceria-based electrolytes are being investigated at a rapid pace as electrolytes for intermediate and low-temperature SOFCs due to their higher oxygen ion conductivity with good electrode compatibility, especially at lower temperatures than stabilized zirconia. In addition, the most emerging advancements in electrolyte materials have demonstrated that the intermediate temperature SOFCs as next-generation energy conversion technology have great potential for innumerable prospective applications.

6.
J Biomed Mater Res B Appl Biomater ; 110(1): 210-219, 2022 01.
Article in English | MEDLINE | ID: mdl-34254427

ABSTRACT

Biomaterials derived from extracellular matrices (ECMs) were extensively used for skin tissue engineering and wound healing. ECM is a complex network of biomolecules (e.g., proteins), which provide organizational support to cells for growth. Thus, ECM could be an ideal biomaterial for fabricating the scaffold. However, oxidative stress and biofilm formation at the wound site remains a major challenge that could be neutralized using herbal ingredients (e.g., curcumin). In this study, ECM was extracted from the biowaste of the goat abattoir by using decellularization. The goat small intestine submucosa (G-SIS) is decellularized to obtain the decellularized G-SIS (DG-SIS) and curcumin (in different concentrations) was incorporated in the DG-SIS to fabricate curcumin-embedded DG-SIS scaffolds. Changes brought by increasing the concentrations of the curcumin in DG-SIS were observed in various properties, including free radical scavenging and antibacterial properties. Results depicted that the scaffolds are porous, biodegradable, biocompatible, antibacterial, and hydrophilic and showed sustained release of curcumin. Besides, it showed free radicals scavenging property. The porosity and hydrophilicity of the scaffolds were decreased with an increase in the curcumin content. However, biodegradability, free radical scavenging, biocompatibility, and antibacterial properties of the scaffolds increased with an increase in the curcumin content. The DG-SIS scaffold containing 1 wt % of curcumin may be a potential biomaterial for wound-healing and skin tissue engineering.


Subject(s)
Curcumin , Tissue Engineering , Animals , Curcumin/pharmacology , Extracellular Matrix/metabolism , Goats , Intestinal Mucosa , Intestine, Small , Tissue Engineering/methods , Tissue Scaffolds , Wound Healing
7.
Biomed Mater ; 16(2): 025008, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33440366

ABSTRACT

For tissue engineering (TE), decellularized matrices gained huge potential as they consist of natural biomolecules which help in cell attachment and proliferation. Among various animal tissues, goat tissue has gained least attention in spite of the fact that goat tissue is less susceptible to disease transmission as compared to cadaveric porcine and bovine tissue. In this study, goat small intestine submucosa (G-SIS) was isolated from goat small intestine (G-SI), a waste from goat-slaughterhouse, and decellularized to obtain decellularized G-SIS (DG-SIS) biomatrix in the form of powder, gel and sponge form, so that it can be used for healing various types of wounds. Further, nanoceria (NC), owing to its free radical scavenging, anti-inflammatory, antibacterial and angiogenic properties, was incorporated in the DG-SIS in to fabricate DG-SIS/NC nanobiocomposite scaffold, which may exhibit synergistic effects to accelerate tissue regeneration. The scaffolds were found to be hydrophilic, biodegradable, haemocompatible, biocompatible, antibacterial and showed free radical scavenging capability. The scaffold containing NC concentration (500 µg ml-1) depicted highest cell (fibroblast cells) adhesion, MTT activity and free radical scavenging as compared to the DG-SIS and other nanobiocomposite scaffolds. Thus, DG-SIS/NC3 (NC with concentration 500 µg ml-1) scaffold could be a potential scaffold biomaterial for skin TE application.


Subject(s)
Cerium/chemistry , Nanocomposites/chemistry , Tissue Engineering/methods , Animals , Anti-Bacterial Agents/chemistry , Anti-Inflammatory Agents/chemistry , Biocompatible Materials/chemistry , Cell Proliferation , Fibroblasts/metabolism , Free Radical Scavengers/chemistry , Gels , Glycosaminoglycans/chemistry , Goats , Intestinal Mucosa/pathology , Intestine, Small/pathology , Materials Testing , Neovascularization, Pathologic , Oxidative Stress , Powders , Proteoglycans/chemistry , Tetrazolium Salts/chemistry , Thiazoles/chemistry , Time Factors , Tissue Scaffolds , Wound Healing
8.
J Biomed Mater Res B Appl Biomater ; 109(8): 1156-1176, 2021 08.
Article in English | MEDLINE | ID: mdl-33319466

ABSTRACT

Vitreous or vitreous humor is a complex transparent gel that fills the space between the lens and retina of an eye and acts as a transparent medium that allows light to pass through it to reach the photoreceptor layer (retina) of the eye. The vitreous humor is removed in ocular surgery (vitrectomy) for pathologies like retinal detachment, macular hole, diabetes-related vitreous hemorrhage detachment, and ocular trauma. Since the vitreous is not actively regenerated or replenished, there is a need for a vitreous substitute to fill the vitreous cavity to provide a temporary or permanent tamponade to the retina following some vitreoretinal surgeries. An ideal vitreous substitute could probably be left inside the eye forever. The vitreous humor is transparent, biocompatible, viscoelastic and highly hydrophilic; polymeric hydrogels with these properties can be a potential candidate to be used as vitreous substitutes. To meet the tremendous demand for the vitreous substitute, many scientists all over the world have developed various kinds of vitreous substitutes or tamponade agent. Vitreous substitutes, whatsoever developed till date, are associated with several advantages and disadvantages, and there is no ideal vitreous substitute available till date. This review highlights the polymer-based vitreous substitutes developed so far, along with their advantages and limitations. The gas-based and oil-based substitutes have also been discussed but very briefly.


Subject(s)
Biocompatible Materials/therapeutic use , Eye Diseases/surgery , Hydrogels/therapeutic use , Vitrectomy , Vitreous Body/surgery , Biocompatible Materials/chemistry , Humans , Hydrogels/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...