Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
Add more filters










Publication year range
1.
Phytomedicine ; 129: 155511, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723523

ABSTRACT

BACKGROUND: Mitochondrial dysfunction associated with mitochondrial DNA mutations, enzyme defects, generation of ROS, and altered oxidative homeostasis is known to induce oral carcinogenesis during exposure to arecoline. Butein, a natural small molecule from Butea monosperma, possesses anti-inflammatory, anti-diabetic, and anti-cancer effects. However, the role of butein in the mitochondrial quality control mechanism has not been illuminated clearly. PURPOSE: This study aimed to explore the role of butein in preserving mitochondrial quality control during arecoline-induced mitochondrial dysfunction in oral cancer to curtail the early onset of carcinogenesis. METHODS: Cell viability was evaluated by MTT assay. The relative protein expressions were determined by western blotting. Immunofluorescence and confocal imaging were used to analyze the relative fluorescence and co-localization of proteins. Respective siRNAs were used to examine the knockdown-based studies. RESULTS: Butein, in the presence of arecoline, significantly caused a decrease in mitochondrial hyperpolarization and ROS levels in oral cancer cells. Mechanistically, we found an increase in COXIV, TOM20, and PGC1α expression during butein treatment, and inhibition of PGC1α blunted mitochondrial biogenesis and decreased the mitochondrial pool. Moreover, the fission protein MTP18, and its molecular partners DRP1 and MFF were dose-dependently increased during butein treatment to maintain mitochondria mass. In addition, we also found increased expression of various mitophagy proteins, including PINK1, Parkin, and LC3 during butein treatment, suggesting the clearance of damaged mitochondria to maintain a healthy mitochondrial pool. Interestingly, butein increased the activity of SIRT1 to enhance the functional mitochondrial pool, and inhibition of SIRT1 found to reduce the mitochondrial levels, as evident from the decrease in the expression of PGC1α and MTP18 in oral cancer cells. CONCLUSION: Our study proved that SIRT1 maintains a functional mitochondrial pool through PGC1α and MTP18 for biogenesis and fission of mitochondria during arecoline exposure and could decrease the risk of mitochondria dysfunctionality associated with the onset of oral carcinogenesis.


Subject(s)
Arecoline , Chalcones , Mitochondria , Mouth Neoplasms , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Reactive Oxygen Species , Sirtuin 1 , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mouth Neoplasms/chemically induced , Mouth Neoplasms/drug therapy , Mitochondria/drug effects , Mitochondria/metabolism , Arecoline/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Chalcones/pharmacology , Sirtuin 1/metabolism , Cell Survival/drug effects
2.
Cancer Lett ; 590: 216843, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579893

ABSTRACT

Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.


Subject(s)
Autophagy , Cellular Senescence , Neoplasms , Neoplastic Stem Cells , Polyploidy , Humans , Cellular Senescence/drug effects , Neoplasms/pathology , Neoplasms/genetics , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/drug effects , Animals , Epithelial-Mesenchymal Transition
3.
Autophagy ; 20(6): 1359-1382, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447939

ABSTRACT

Mitophagy involves the selective elimination of defective mitochondria during chemotherapeutic stress to maintain mitochondrial homeostasis and sustain cancer growth. Here, we showed that CLU (clusterin) is localized to mitochondria to induce mitophagy controlling mitochondrial damage in oral cancer cells. Moreover, overexpression and knockdown of CLU establish its mitophagy-specific role, where CLU acts as an adaptor protein that coordinately interacts with BAX and LC3 recruiting autophagic machinery around damaged mitochondria in response to cisplatin treatment. Interestingly, CLU triggers class III phosphatidylinositol 3-kinase (PtdIns3K) activity around damaged mitochondria, and inhibition of mitophagic flux causes the accumulation of excessive mitophagosomes resulting in reactive oxygen species (ROS)-dependent apoptosis during cisplatin treatment in oral cancer cells. In parallel, we determined that PPARGC1A/PGC1α (PPARG coactivator 1 alpha) activates mitochondrial biogenesis during CLU-induced mitophagy to maintain the mitochondrial pool. Intriguingly, PPARGC1A inhibition through small interfering RNA (siPPARGC1A) and pharmacological inhibitor (SR-18292) treatment counteracts CLU-dependent cytoprotection leading to mitophagy-associated cell death. Furthermore, co-treatment of SR-18292 with cisplatin synergistically suppresses tumor growth in oral cancer xenograft models. In conclusion, CLU and PPARGC1A are essential for sustained cancer cell growth by activating mitophagy and mitochondrial biogenesis, respectively, and their inhibition could provide better therapeutic benefits against oral cancer.


Subject(s)
Cell Survival , Clusterin , Mitochondria , Mitophagy , Mouth Neoplasms , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Humans , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Clusterin/metabolism , Clusterin/genetics , Mitophagy/drug effects , Mitophagy/physiology , Mitochondria/metabolism , Mitochondria/drug effects , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/genetics , Animals , Cell Survival/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Organelle Biogenesis , Mice , Apoptosis/drug effects , Mice, Nude , Reactive Oxygen Species/metabolism , Autophagy/physiology , Autophagy/drug effects
4.
Phytomedicine ; 123: 155157, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951147

ABSTRACT

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Subject(s)
Bacopa , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Mice , Humans , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitophagy , Bacopa/metabolism , Carcinoma, Squamous Cell/drug therapy , Squamous Cell Carcinoma of Head and Neck , Arecoline/pharmacology , Mouth Neoplasms/drug therapy , Mice, Inbred C57BL , Apoptosis , Reactive Oxygen Species/metabolism
5.
Cell Death Dis ; 14(11): 732, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37949849

ABSTRACT

SIRT1 (NAD-dependent protein deacetylase sirtuin-1), a class III histone deacetylase acting as a tumor suppressor gene, is downregulated in oral cancer cells. Non-apoptotic doses of cisplatin (CDDP) downregulate SIRT1 expression advocating the mechanism of drug resistance. SIRT1 downregulation orchestrates inhibition of DNM1L-mediated mitochondrial fission, subsequently leading to the formation of hyperfused mitochondrial networks. The hyperfused mitochondrial networks preserve the release of cytochrome C (CYCS) by stabilizing the mitochondrial inner membrane cristae (formation of mitochondrial nucleoid clustering mimicking mito-bulb like structures) and reducing the generation of mitochondrial superoxide to inhibit apoptosis. Overexpression of SIRT1 reverses the mitochondrial hyperfusion by initiating DNM1L-regulated mitochondrial fission. In the overexpressed cells, inhibition of mitochondrial hyperfusion and nucleoid clustering (mito-bulbs) facilitates the cytoplasmic release of CYCS along with an enhanced generation of mitochondrial superoxide for the subsequent induction of apoptosis. Further, low-dose priming with gallic acid (GA), a bio-active SIRT1 activator, nullifies CDDP-mediated apoptosis inhibition by suppressing mitochondrial hyperfusion. In this setting, SIRT1 knockdown hinders apoptosis activation in GA-primed oral cancer cells. Similarly, SIRT1 overexpression in the CDDP resistance oral cancer-derived polyploid giant cancer cells (PGCCs) re-sensitizes the cells to apoptosis. Interestingly, synergistically treated with CDDP, GA induces apoptosis in the PGCCs by inhibiting mitochondrial hyperfusion.


Subject(s)
Mitochondrial Dynamics , Mouth Neoplasms , Humans , Superoxides , Sirtuin 1/genetics , Sirtuin 1/metabolism , Apoptosis , Cisplatin/pharmacology , Mitomycin , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics
7.
ACS Appl Bio Mater ; 6(10): 4314-4325, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37782070

ABSTRACT

Bacterial infection and the development of antibiotic-resistant bacteria have decreased the effectiveness of traditional antibiotic treatments for wound healing. The design of a multifunctional adhesive hydrogel with antibacterial activity, self-healing properties, and on-demand removability to promote wound healing is highly desirable. In this work, a photothermal cyclodextrin with a NO-releasing moiety has been incorporated within an oxidized sodium alginate conjugated polyacrylamide (OS@PA) hydrogel to get a photothermal NO-releasing GSNOCD-OS@PA hydrogel. Such a multifunctional hydrogel has the unique feature of combined antibacterial activity as a result of a controlled photothermal effect and NO gas release under an 808 near-infrared laser. Because of oxidized sodium alginate (OSA), the hydrogel matrix easily adheres to the skin under twisted and bent states. In vitro cytotoxicity analysis against 3T3 cells showed that the hydrogels OS@PA and GSNOCD-OS@PA are noncytotoxic under laser exposure. The temperature-induced NO release by GSNOCD-OS@PA reached 31.7 mg/L when irradiated with an 808 nm laser for 10 min. The combined photothermal therapy and NO release from GSNOCD-OS@PA effectively reduced viability of both Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative) to 3 and 5%, respectively. Importantly, the phototherapeutic NO-releasing platform displayed effective fibroblast proliferation in a cell scratch assay.


Subject(s)
Adhesives , Hydrogels , Mice , Animals , Hydrogels/pharmacology , Anti-Bacterial Agents , Wound Healing , Alginates/pharmacology
9.
Cytokine ; 171: 156366, 2023 11.
Article in English | MEDLINE | ID: mdl-37716189

ABSTRACT

Cytokine therapy and cytokine-mediated autophagy have been used as prominent host-directed therapy (HDT) approaches to restrain M. tb growth in the host cell. In the present study, we have dissected the anti-tubercular activity of Soybean lectin (SBL) through cytokine-mediated autophagy induction in differentiated THP-1 (dTHP-1) cells. A significant increase in IL-6 expression was observed in both uninfected and mycobacteria infected dTHP-1 cells through the P2RX7 mediated pathway via PI3K/Akt/CREB-dependent signalling after SBL treatment. Inhibition of IL-6 level using IL-6 neutralizing antibody or associated signalling significantly enhanced the mycobacterial load in SBL-treated dTHP-1 cells. Further, autocrine signalling of IL-6 through its receptor-induced Mcl-1 expression activated autophagy via JAK2/STAT3 pathway, and inhibition of this pathway affected autophagy. Finally, blocking the IL-6-regulated autophagy through NSC 33994 (a JAK2 inhibitor) or S63845 (an Mcl-1 inhibitor) led to a notable increase in intracellular mycobacterial growth in SBL-treated cells. Taken together, these results indicate that SBL interacts with P2RX7 to regulate PI3K/Akt/CREB network to release IL-6 in dTHP-1 cells. The released IL-6, in turn, activates the JAK2/STAT3/Mcl-1 pathway upon interaction with IL-6Rα to modulate autophagy that ultimately controls mycobacterial growth in macrophages.


Subject(s)
Interleukin-6 , Mycobacterium tuberculosis , Autophagy , Interleukin-6/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , THP-1 Cells , Humans
10.
Free Radic Biol Med ; 207: 72-88, 2023 10.
Article in English | MEDLINE | ID: mdl-37423560

ABSTRACT

Cancer stem cell (CSC) populations are regulated by autophagy, which in turn modulates tumorigenicity and malignancy. In this study, we demonstrated that cisplatin treatment enriches the CSCs population by increasing autophagosome formation and speeding up autophagosome-lysosome fusion by recruiting RAB7 to autolysosomes. Further, cisplatin treatment stimulates lysosomal activity and increases autophagic flux in oral CD44+ cells. Interestingly, both ATG5- and BECN1-dependent autophagy are essential for maintaining cancer stemness, self-renewal, and resistance to cisplatin-induced cytotoxicity in oral CD44+ cells. Moreover, we discovered that autophagy-deficient (shATG5 and/or shBECN1) CD44+ cells activates nuclear factor, erythroid 2 like 2 (NRF2) signaling, which in turn reduces the elevated reactive oxygen species (ROS) level enhancing cancer stemness. Genetic inhibition of NRF2 (siNRF2) in autophagy-deficient CD44+ cells increases mitochondrial ROS (mtROS) level, reducing cisplatin-resistance CSCs, and pre-treatment with mitoTEMPO [a mitochondria-targeted superoxide dismutase (SOD) mimetic] lessened the cytotoxic effect enhancing cancer stemness. We also found that inhibiting autophagy (with CQ) and NRF2 signaling (with ML-385) combinedly increases cisplatin cytotoxicity, thereby suppressing the expansion of oral CD44+ cells; this finding has the potential to be clinically applicable in resolving CSC-associated chemoresistance and tumor relapse in oral cancer.


Subject(s)
Autophagy , Cisplatin , Mitochondria , Neoplasms , Apoptosis , Cisplatin/pharmacology , Mitochondria/metabolism , Neoplasms/metabolism , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
11.
Drug Discov Today ; 28(9): 103692, 2023 09.
Article in English | MEDLINE | ID: mdl-37379905

ABSTRACT

Cellular localization and deacetylation activity of sirtuin 1 (SIRT1) has a significant role in cancer regulation. The multifactorial role of SIRT1 in autophagy regulates several cancer-associated cellular phenotypes, aiding cellular survival and cell death induction. SIRT1-mediated deacetylation of autophagy-related genes (ATGs) and associated signaling mediators control carcinogenesis. The hyperactivation of bulk autophagy, disrupted lysosomal and mitochondrial biogenesis, and excessive mitophagy are key mechanism for SIRT1-mediated autophagic cell death (ACD). In terms of the SIRT1-ACD nexus, identifying SIRT1-activating small molecules and understanding the possible mechanism triggering ACD could be a potential therapeutic avenue for cancer prevention. In this review, we provide an update on the structural and functional intricacy of SIRT1 and SIRT1-mediated autophagy activation as an alternative cell death modality for cancer prevention.


Subject(s)
Autophagic Cell Death , Neoplasms , Sirtuin 1/genetics , Sirtuin 1/metabolism , Signal Transduction , Autophagy/genetics , Neoplasms/prevention & control
12.
J Cell Sci ; 136(13)2023 07 01.
Article in English | MEDLINE | ID: mdl-37313742

ABSTRACT

MTP18 (also known as MTFP1), an inner mitochondrial membrane protein, plays a vital role in maintaining mitochondrial morphology by regulating mitochondrial fission. Here, we found that MTP18 functions as a mitophagy receptor that targets dysfunctional mitochondria into autophagosomes for elimination. Interestingly, MTP18 interacts with members of the LC3 (also known as MAP1LC3) family through its LC3-interacting region (LIR) to induce mitochondrial autophagy. Mutation in the LIR motif (mLIR) inhibited that interaction, thus suppressing mitophagy. Moreover, Parkin or PINK1 deficiency abrogated mitophagy in MTP18-overexpressing human oral cancer-derived FaDu cells. Upon exposure to the mitochondrial oxidative phosphorylation uncoupler CCCP, MTP18[mLIR]-FaDu cells showed decreased TOM20 levels without affecting COX IV levels. Conversely, loss of Parkin or PINK1 resulted in inhibition of TOM20 and COX IV degradation in MTP18[mLIR]-FaDu cells exposed to CCCP, establishing Parkin-mediated proteasomal degradation of outer mitochondrial membrane as essential for effective mitophagy. We also found that MTP18 provides a survival advantage to oral cancer cells exposed to cellular stress and that inhibition of MTP18-dependent mitophagy induced cell death in oral cancer cells. These findings demonstrate that MTP18 is a novel mitophagy receptor and that MTP18-dependent mitophagy has pathophysiologic implications for oral cancer progression, indicating inhibition of MTP18-mitophagy could thus be a promising cancer therapy strategy.


Subject(s)
Mitochondrial Membranes , Mouth Neoplasms , Humans , Apoptosis/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/metabolism , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondrial Dynamics , Mitochondrial Membranes/metabolism , Mitophagy/genetics , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
Autophagy ; 19(8): 2196-2216, 2023 08.
Article in English | MEDLINE | ID: mdl-36779631

ABSTRACT

Mitophagy regulates cancer stem cell (CSC) populations affecting tumorigenicity and malignancy in various cancer types. Here, we report that cisplatin treatment led to the activation of higher mitophagy through regulating CLU (clusterin) levels in oral CSCs. Moreover, both the gain-of-function and loss-of-function of CLU indicated its mitophagy-specific role in clearing damaged mitochondria. CLU also regulates mitochondrial fission by activating the Ser/Thr kinase AKT, which triggered phosphorylation of DNM1L/Drp1 at the serine 616 residue initiating mitochondrial fission. More importantly, we also demonstrated that CLU-mediated mitophagy positively regulates oral CSCs through mitophagic degradation of MSX2 (msh homeobox 2), preventing its nuclear translocation from suppressing SOX2 activity and subsequent inhibition of cancer stemness and self-renewal ability. However, CLU knockdown disturbed mitochondrial metabolism generating excessive mitochondrial superoxide, which improves the sensitivity to cisplatin in oral CSCs. Notably, our results showed that CLU-mediated cytoprotection relies on SOX2 expression. SOX2 inhibition through genetic (shSOX2) and pharmacological (KRX-0401) strategies reverses CLU-mediated cytoprotection, sensitizing oral CSCs toward cisplatin-mediated cell death.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Clusterin/genetics , Clusterin/metabolism , Cisplatin/pharmacology , Autophagy , Neoplastic Stem Cells/metabolism , Mitochondrial Dynamics/genetics , Neoplasms/metabolism
14.
Adv Protein Chem Struct Biol ; 133: 159-180, 2023.
Article in English | MEDLINE | ID: mdl-36707200

ABSTRACT

Autophagy, a classical cellular degradative catabolic process, also involves a functionally discrete non-degradative role in eukaryotic cells. It imparts critical regulatory function on conventional and unconventional protein secretion (degradative and secretory autophagy with distinct lysosomal degradation and extracellular expulsion, respectively) pathways. The N-amino terminal leader sequence containing proteins follows a conventional secretion pathway, while the leader-less proteins opt for secretory autophagy. The secretory autophagic process ensembles core autophagy machinery proteins, specifically ULK1/2, Beclin 1, LC3, and GABARAP, in coordination with Golgi re-assembly and stacking proteins (GRASPs). The secretory omegasomes fuse with the plasma membrane for the expulsion of cytosolic cargos to the extracellular environment. Alternatively, the secretory omegasomes also fuse with multi-vesicular bodies (MVBs) and harmonize ESCRTs (Complex I; TSG101) and Rab GTPase for their release to extracellular space. Autophagy has been associated with the secretion of diverse proteins involved in cellular signaling, inflammation, and carcinogenesis. Secreted proteins play an essential role in cancer by sustaining cell proliferation, inhibiting apoptosis, enhancing angiogenesis and metastasis, immune cell regulation, modulation of cellular energy metabolism, and resistance to anticancer drugs. The complexity of autophagy regulation during tumorigenesis is dependent on protein secretion pathways. Autophagy-regulated TOR-autophagy spatial coupling compartment complex energizes enhanced secretion of pro-inflammatory cytokines and leaderless proteins such as HMGB1. In conclusion, the chapter reviews the role of autophagy in regulating conventional and unconventional protein secretion pathways and its possible role in cancer.


Subject(s)
Autophagy , Neoplasms , Humans , Secretory Pathway , Lysosomes/metabolism , Cell Membrane/metabolism , Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
15.
Toxicol In Vitro ; 88: 105561, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36702439

ABSTRACT

Aberrant expression of various genes is associated with the progression of oral squamous cell carcinoma. Stonin 2, an endocytic protein, has a prominent role in clathrin-associated endocytosis. Its position in oral cancer is still unknown. Here, we report that STON2 expression increases with an increase in the grade of the oral cancer tissue. Further, STON2 overexpressed cells possess a higher rate of proliferation and migraton in oral cancer cells. STON2 helps maintain lysosomal functions by preserving the lysosomal membrane integrity. It activates the Akt-mTOR axis and retains the mTOR on the membrane of the lysosomes. Further, we have identified an inhibitor of STON2, i.e., Trifluoperazine dihydrochloride (TFP), which targets the lysosomal axis by disrupting the Akt-mTOR pathway and causes lysosomal membrane permeabilization. Intererstingly, TFP shows a decrease in cell vaibility on the oral cancer cells and it was observed that cell viability is restored in TFP-treated STON2 overexpressed cells. Moreover, the lysosomal activity and the Akt-mTOR expression are restored in STON2 overexpressed cells co-treated with TFP, establishing TFP targets STON2 to showcase its anti-cancer effects in oral cancer. In conclusion, STON2 might serve as a potential biomarker in oral cancer, and its inhibition could functions as a novel anti-cancer mechanims against oral cancer.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Humans , Cell Survival , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/metabolism , Mouth Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Lysosomes , Cell Line, Tumor , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism
16.
J Cell Physiol ; 238(2): 287-305, 2023 02.
Article in English | MEDLINE | ID: mdl-36502521

ABSTRACT

Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome-governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophagy to lysosomal biogenesis and metabolite pool maintenance) by sensing cellular metabolic status. Lysosomes also interact with other organelles by establishing contact sites through which they exchange cellular contents. Lysosomal function is critically assessed by lysosomal positioning and motility for cellular adaptation. In this setting, mechanistic target of rapamycin kinase (MTOR) is the chief architect of lysosomal signaling to control cellular homeostasis. Notably, lysosomes can orchestrate explicit cell death mechanisms, such as autophagic cell death and lysosomal membrane permeabilization-associated regulated necrotic cell death, to maintain cellular homeostasis. These lines of evidence emphasize that the lysosomes serve as a central signaling hub for cellular homeostasis.


Subject(s)
Apoptosis , Signal Transduction , Humans , Cell Survival , Homeostasis/physiology , Signal Transduction/physiology , Lysosomes/metabolism , Autophagy/physiology
17.
Curr Drug Targets ; 23(13): 1252-1260, 2022.
Article in English | MEDLINE | ID: mdl-35975849

ABSTRACT

Homeopathy is a widely practiced alternate system of medicine around the world that employs small doses of various medicines to promote auto-regulation and self-healing. It is among the most commonly used alternative approaches in cancer and other diseases and alternative therapeutic systems. It is widely used as palliative and as supportive therapy in cancer patients. Few cases have been reported on patients using homeopathy after surgery, radiotherapy, and chemotherapy, generally for overcoming side effects. The dose of Homoeopathic medicines and their mechanism of action in cancer has also been documented, while clinical trials on the effects of Homoeopathy in cancer treatment are rare. It is found that the anticancer potential of homeopathic medicines is reported for different cancer types, which show their efficacy through apoptosis and immune system modulation. Homeopathic treatment is an add-on to conventional therapy, with almost no interaction with the conventional drugs due to the small dose, and is largely attributed to improving lives by providing symptomatic relief, increasing survival time and boosting patient immunity. This review explores the accountability of the homeopathic system of medicine by highlighting some of the most commonly used homeopathic drugs for different types of cancers.


Subject(s)
Homeopathy , Neoplasms , Humans , Neoplasms/therapy
18.
Free Radic Biol Med ; 190: 307-319, 2022 09.
Article in English | MEDLINE | ID: mdl-35985563

ABSTRACT

Although stress-induced mitochondrial hyperfusion (SIMH) exerts a protective role in aiding cell survival, in the absence of mitochondrial fission, SIMH drives oxidative stress-related induction of apoptosis. In this study, our data showed that MTP18, a mitochondrial fission-promoting protein expression, was increased in oral cancer. We have screened and identified S28, a novel inhibitor of MTP18, which was found to induce SIMH and subsequently trigger apoptosis. Interestingly, it inhibited MTP18-mediated mitochondrial fission, as shown by a decrease in p-Drp1 along with increased Mfn1 expression in oral cancer cells. Moreover, S28 induced autophagy but not mitophagy due to the trouble in engulfment of hypoperfused mitochondria. Interestingly, S28-mediated SIMH resulted in the loss of mitochondrial membrane potential, leading to the consequent generation of mitochondrial superoxide to induce intrinsic apoptosis. Mechanistically, S28-induced mitochondrial superoxide caused lysosomal membrane permeabilization (LMP), resulting in decreased lysosomal pH, which impaired autophagosome-lysosome fusion. In this setting, it showed that overexpression of MTP18 resulted in mitochondrial fission leading to mitophagy and inhibition of superoxide-mediated LMP and apoptosis. Further, S28, in combination with FDA-approved anticancer drugs, exhibited higher apoptotic activity and decreased cell viability, suggesting the MTP18 inhibition combined with the anticancer drug could have greater efficacy against cancer.


Subject(s)
Mitochondrial Dynamics , Mouth Neoplasms , Apoptosis/physiology , Humans , Lysosomes/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism
19.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166517, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35940381

ABSTRACT

BACKGROUND: Concurrent viral infections insist on dysregulated epigenetics of tumor suppressor genes (TSGs), cell cycle regulators, apoptosis, and autophagy-associated genes to manifest oral carcinogenesis. Autophagy has been projected as a strategic defense signaling cascade against viral entry and subsequent oral carcinogenesis. Compromised autophagy signaling during viral infection fuels oral cancer initiation and progression. SCOPE OF REVIEW: The aberrant expression of autophagy genes and their encoded proteins is catalyzed by the dysregulated epigenome, legitimate epigenomic mutations, and post-transcriptional modifications such as hypermethylation, deacetylation of histone and non-histone targets, and hyperacetylation of histones that drive malignant transformation during oral carcinogenesis. Recent investigations have predicted epi-drugs (intriguingly methylation and deacetylation inhibitors and activators) as next-generation oral cancer therapeutic agents with a special notation for autophagy regulation. MAJOR CONCLUSIONS: This review focuses on the epigenetic mediated post-transcriptional modulation of autophagy genes during viral manifested oral carcinogenesis with a distinctive perception of autophagy-modulating epi-drugs in oral cancer therapeutics.


Subject(s)
Epigenomics , Mouth Neoplasms , Autophagy/genetics , Carcinogenesis/genetics , Epigenesis, Genetic , Histones/metabolism , Humans , Mouth Neoplasms/genetics
20.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166428, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35533906

ABSTRACT

Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown. Here, we report procaine inhibited DNA methylation by suppressing DNMT activity and increased the expression of PAX9, a differentiation gene in OSCC cells. Interestingly, the reactivation of PAX9 by procaine found to inhibit cell growth and trigger apoptosis in OSCC in vitro and in vivo. Likely, the enhanced PAX9 expression after exposure to procaine controls stemness and differentiation through the autophagy-dependent pathway in OSCC cells. PAX9 inhibition abrogated procaine-induced apoptosis, autophagy, and inhibition of stemness. In OSCC cells, procaine improved anticancer drug sensitivity through PAX9, and its deficiency significantly blunted the anticancer drug sensitivity mediated by procaine. Additionally, NRF2 activation by procaine facilitated the antitumor response of PAX9, and pharmacological inhibition of NRF2 by ML385 reduced death and prevented the decrease in the orosphere-forming potential of OSCC cells. Furthermore, procaine promoted antitumor activity in FaDu xenografts in athymic nude mice, and immunohistochemistry data showed that PAX9 expression was significantly enhanced in the procaine group compared to the vehicle control. In conclusion, PAX9 reactivation in response to DNMT inhibition could trigger a potent antitumor mechanism to provide a new therapeutic strategy for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Animals , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , DNA , Humans , Methyltransferases , Mice , Mice, Nude , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , NF-E2-Related Factor 2 , PAX9 Transcription Factor/genetics , PAX9 Transcription Factor/metabolism , Procaine/therapeutic use , Squamous Cell Carcinoma of Head and Neck
SELECTION OF CITATIONS
SEARCH DETAIL
...