Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176313

ABSTRACT

Reduction in friction ensures fuel economy, control on emissions and durability of components in internal combustion engines. A modern gasoline internal combustion engine was instrumented to determine the friction values at the cam-roller interface considering the effects of surface treatment and engine operating state. A series of tests under different operating speeds and lubricant inlet temperatures were undertaken using both an original surface roller and a Wonder Process Craft (WPC) surface-treated engine roller. The results clearly revealed a substantial reduction in friction magnitude for the WPC surface-treated engine roller in comparison to the original roller while operating under similar conditions, indicating their strong potential for employment in engines. An increase in friction with the rise in temperature was also observed for both types of rollers, whereas increased lubricant entraining velocity due to higher operating speed had the opposite impact. A considerable reduction in frictional drive torque ranging from 8% to 28% was observed by employing the WPC-treated roller in comparison to original/untreated roller at various operating conditions, which signifies the strong potential for employment of WPC surface treatment in the roller/follower valve train engines.

2.
Materials (Basel) ; 14(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34885361

ABSTRACT

The environmental concerns associated with artificially formulated engine oils have forced a shift towards bio-based lubricants. The deposition of hard coatings on engine components and migrating to environmentally friendly green lubricants can help in this regard. Chemically modified forms of vegetable oils, with better low-temperature characteristics and enhanced thermo-oxidative stability, are suitable substitutes to conventional lubricant base oils. The research presented in this manuscript was undertaken to experimentally investigate the wear and friction performance of a possible future generation of an environmentally friendly bio-based lubricant as a potential replacement for conventional engine lubricants. In order to quantify the tribological benefits which can be gained by the deposition of DLC coatings, (an (a-C:H) hydrogenated DLC coating and an (a-C:H:W) tungsten-doped DLC coating) were applied on the cam/tappet interface of a direct acting valve train assembly of an internal combustion engine. The tribological correlation between DLC-coated engine components, lubricant base oils and lubricant additives have been thoroughly investigated in this study using actual engine operating conditions. Two additive-free base oils (polyalphaolefines (PAO) and chemically-modified palm oil (TMP)) and two multi-additive-containing lubricants were used in this investigation. Real-time drive torque was measured to determine the friction force, detailed post-test analysis was performed, which involved the use of a specialized jig to measure camlobe wear. An optical profilometer was used to measure the wear on the tappet, high-resolution scanning electron microscopy was employed to study the wear mechanism and energy-dispersive X-ray spectroscopy was performed on the tested samples to qualitatively access the degradation of the coating. When using additive-free TMP, a low friction coefficient was observed for the cam/tappet interface. The presence of additives further improved the friction characteristics of TMP, resulting in reduced average friction torque values. A tremendous enhancement in wear performance was recorded with a-C:H-coated parts and the coating was able to withstand the test conditions with little or no delamination.

3.
Materials (Basel) ; 14(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771836

ABSTRACT

It has been established in literature that the addition of nanoparticles to lubricants at an optimum concentration results in a lower coefficient of friction compared to lubricants with no nanoparticle additives. This review paper shows a comparison of different lubricants based on the COF (coefficient of friction) with nanoadditives. The effect of the addition of nanoparticles on the friction coefficient was analyzed for both synthetic and biolubricants separately. The limitations associated with the use of nanoparticles are explained. The mechanisms responsible for a reduction in friction when nanoparticles are used as an additive are also discussed. Various nanoparticles that have been most widely used in recent years showed good performance within lubricants, including CuO (copper oxide), MoS2 (molybdenum disulfide), and TiO2 (titanium dioxide). The paper also indicates some research gaps that need to be addressed.

4.
Materials (Basel) ; 12(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583540

ABSTRACT

This article presents a wear study of Ni⁻Al2O3 nanocomposite coatings in comparison to uncoated steel contacts under reciprocating motion. A ball-on-flat type contact configuration has been used in this study in which a reciprocating flat steel sample has been used in a coated and uncoated state against a stationary steel ball under refrigerant lubrication. The next generation of environmentally friendly refrigerant HFE-7000 has been used itself as lubricant in this study without the influence of any external lubricant. The thermodynamic applications and performance of HFE-7000 is being studied worldwide, as it is replacing the previous generation of refrigerants. No work however has been previously performed to evaluate the wear performance of HFE-7000 using nanocomposite coatings. The wear scar developed on each of the flat and ball samples was studied using a Scanning Electron Microscope (SEM). The micrographs show that a combination of adhesive and abrasive wear occurs when using uncoated steel samples. Micro-delamination is observed in the case of Ni⁻Al2O3 nanocomposite coatings accompanied by adhesive and abrasive wear. Wear volume of the wear track was calculated using a White Light Interferometer. Energy-Dispersive X-ray Spectroscopic (EDS) analysis of the samples reveals fluorine and oxygen on the rubbing parts when tested using coated as well as uncoated samples. The formation of these fluorinated and oxygenated tribo-films helps to reduce wear and their formation is accelerated by increasing the refrigerant temperature. Ni⁻Al2O3 nanocomposite coatings show good wear performance at low and high loads in comparison to uncoated contacts. At intermediate loads the coated contacts resulted in increased wear, especially at low loads. This increase in wear is associated with the delamination of the coating and the slow formation of protective surface films under these testing conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...