Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell Commun Signal ; 22(1): 2, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38169388

ABSTRACT

BACKGROUND: The B-cell lymphoma 2 (Bcl-2) protein regulates programmed cell death throughout the disease conditions by upholding apoptotic pathways. However, the mechanism by which it's expressed in chondrocytes still needs to be studied in chondrocyte-related disorders. Additionally, exploring the potential therapeutic role of Chlorogenic acid (CGA) in confluence with Bcl-2 modulation is of significant interest. METHODS: In vivo and in vitro studies were performed according to our previous methodologies. The chondrocytes were cultured in specific growth media under standard conditions after expression verification of different microRNAs through high-throughput sequencing and verification of Bcl-2 involvement in tibial growth plates. The effect of Bcl-2 expression was investigated by transfecting chondrocytes with miR-460a, siRNA, and their negative controls alone or in combination with CGA. The RNA was extracted and subjected to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot analysis and immunofluorescence assays were performed to visualize the intracellular localization of Bcl-2 and associated proteins related to apoptotic and inflammasome pathways. Moreover, apoptosis through flow cytometry was also performed to understand the modulation of concerning pathways. RESULTS: The suppression of Bcl-2 induced higher apoptosis and mitochondrial dysfunction, leading to IL-1ß maturation and affecting the inflammasome during chondrocyte proliferation. Conversely, overexpression attenuated the activation, as evidenced by reduced caspase activity and IL-1ß maturation. In parallel, CGA successfully reduced siRNA-induced apoptosis by decreasing Cytochrome C (Cyto C) release from the mitochondria to the cytoplasm, which in turn decreased Caspase-3 and Caspase-7 cleavage with Bcl-2-associated X protein (Bax). Furthermore, siBcl-2 transfection and CGA therapy increased chondrocyte proliferation and survival. The CGA also showed a promising approach to maintaining chondrocyte viability by inhibiting siRNA-induced apoptosis. CONCLUSIONS: Targeting Bcl-2-mediated regulation might be a possible treatment for chondrocyte-related conditions. Moreover, these results add knowledge of the complicated processes underlying chondrocyte function and the pathophysiology of related diseases, highlighting the significance of target specific therapies. Video Abstract.


Subject(s)
Chondrocytes , MicroRNAs , Chondrocytes/metabolism , Inflammasomes/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Apoptosis , MicroRNAs/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/metabolism , Interleukin-1beta/metabolism
2.
ACS Omega ; 8(39): 35722-35737, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37810732

ABSTRACT

The present study is pertinent to photo-induced, hydrophilic, nano-calcite grown onto the mercerized surface of polyester fabric (PF), treated with UV (10-50 min) and visible light (1-5 h) in addition to its photocatalytic application. The wicking method has been employed to select the most hydrophilic sample of fabric upon irradiation. The micrographs obtained by scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy indicated the erosions occurring at the surface of nano-calcite after UV light irradiation, maintaining the crystallinity of the photocatalyst. The surface charge has been measured for as-fabricated and irradiated nano-calcite @ PF for the development of high negative zeta potential after UV light irradiation (-24.6 mV). The irradiated nano-calcite @ PF exhibited a significant change in its contact angle, and the wetting property was enhanced to a considerable extent on UV (55.32°) and visible light irradiation (79.00°) in comparison to as-fabricated nano-calcite @ PF (137.54°). The irradiated samples of nano-calcite @ PF delineated the redshift in harvesting of solar spectrum, as revealed by diffuse reflectance spectroscopy comparative spectra. Additionally, the band gap of untreated nano-calcite was found to be 3.5 eV, while UV- and visible light-irradiated PF showed a reduction in band gap up to 2.95 and 3.15 eV upon UV and visible light irradiation. The photocatalytic efficiency of mesoporous nano-calcite was evaluated by photocatalytic degradation of imidacloprid as the probe pollutant. Higher solar photocatalytic degradation of imidacloprid (94.15%) was attained by UV light-irradiated nano-calcite @ PF. The time-resolved photoluminescence study has verified the high photocatalytic activity of UV light-irradiated nano-calcite @ PF for the generation of high concentration of hydroxyl radicals. The highly efficient reusability of a nano-calcite-based solar photocatalytic reactor has been observed for 10 cycles of treatment of imidacloprid bearing wastewater. The enhanced photocatalytic activity of UV light-exposed (20 min), superhydrophilic, nano-calcite @ PF for mineralization of pollutants suggests it to be an efficient solar photocatalyst for environmental applications.

3.
Nutrients ; 15(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37242231

ABSTRACT

Cancer is reported to be a major cause of death worldwide, accounting for 10 million in 2020 based on 19 [...].


Subject(s)
Diet , Neoplasms , Humans , Neoplasms/drug therapy , Global Health
4.
Front Cell Infect Microbiol ; 13: 1105126, 2023.
Article in English | MEDLINE | ID: mdl-36936759

ABSTRACT

Diarrhea is a severe bovine disease, globally prevalent in farm animals with a decrease in milk production and a low fertility rate. Cryptosporidium spp. are important zoonotic agents of bovine diarrhea. However, little is known about microbiota and short-chain fatty acids (SCFAs) changes in yaks infected with Cryptosporidium spp. Therefore, we performed 16S rRNA sequencing and detected the concentrations of SCFAs in Cryptosporidium-infected yaks. Results showed that over 80,000 raw and 70,000 filtered sequences were prevalent in yak samples. Shannon (p<0.01) and Simpson (p<0.01) were both significantly higher in Cryptosporidium-infected yaks. A total of 1072 amplicon sequence variants were shared in healthy and infected yaks. There were 11 phyla and 58 genera that differ significantly between the two yak groups. A total of 235 enzymes with a significant difference in abundance (p<0.001) were found between healthy and infected yaks. KEGG L3 analysis discovered that the abundance of 43 pathways was significantly higher, while 49 pathways were significantly lower in Cryptosporidium-infected yaks. The concentration of acetic acid (p<0.05), propionic acid (p<0.05), isobutyric acid (p<0.05), butyric acid (p<0.05), and isovaleric acid was noticeably lower in infected yaks, respectively. The findings of the study revealed that Cryptosporidium infection causes gut dysbiosis and results in a significant drop in the SCFAs concentrations in yaks with severe diarrhea, which may give new insights regarding the prevention and treatment of diarrhea in livestock.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Microbiota , Cattle , Animals , Cryptosporidium/genetics , RNA, Ribosomal, 16S/genetics , Fatty Acids, Volatile , Diarrhea/veterinary , Butyric Acid , Intestines
5.
Microb Pathog ; 174: 105922, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36462579

ABSTRACT

The infection of Cryptosporidium in pigs causes digestive system ailments, diarrhea and weight loss serving as an economic burden, especially in newborn animals. The bacterial fermentation products of short-chain fatty acids have important roles in immune function, microbiota regulation, osmotic balance and metabolism. However, till now little knowledge is available about the effect of Cryptosporidium infection on microbiota and SCFAs in plateau pigs. Hence, we performed this study to explore the response of microbiota and SCFAs in the natural infection of Cryptosporidium in Tibetan pigs. Cryptosporidium positive (infected, G) and negative samples (healthy, J) in our previous study were used for high throughputsequencing and Gas Chromatography-Mass Spectrometer analysis. Over 81 000 and 74 000 filtered sequences were detected in healthy and infected Tibetan pigs, respectively. Lower sample richness and evenness were observed in Cryptosporidium infection, as alpha diversity analysis found that chao1 (p < 0.05), faith_pd (p < 0.05), and observed_features in group G were significantly lower than pigs in group J. A total of 4 and 27 significant different phyla and genera were found between group G and J. The changed genera were Psychrobacter, Desemzia, Succiniclasticum, Treponema, Campylobacter, Atopobium, Olsenella, Pediococcus, Peptococcus, Sharpea, Desulfovibrio, Acinetobacter, Rhodococcus, Anaerostipes, Turicibacter, Lactobacillus, RFN20, Phascolarctobacterium, Roseburia, Megasphaera, Streptococcus, Blautia, Lachnospira, rc4_4, Gemmiger, Dorea, Oribacterium and Prevotella, which affected the microbiota functions with 360 abundance changed enzymes, and pathways in L1, L2 and L3 levels of KEGG. The concentration of acetic acid (p < 0.01), butyric acid (p < 0.05) and caproic acid (p < 0.01) were lower in group G. In conclusion, the present study herein uncovered that the host responses to Cryptosporidium infection in Tibetan pigs with 27 of significantly changed genera decreased SCFAs in pigs, which may provide insights in further developing novel therapy against this protozoan.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Gastrointestinal Microbiome , Animals , Swine , Tibet , Dysbiosis/veterinary , Butyric Acid
6.
Front Microbiol ; 13: 1036042, 2022.
Article in English | MEDLINE | ID: mdl-36386709

ABSTRACT

Diarrhea is a word-widely severe disease coupled with gastrointestinal dysfunction, especially in cattle causing huge economic losses. However, the effects of currently implemented measures are still not enough to prevent diarrhea. Previously we found that dropped short-chain fatty acids in diarrhea yaks, and butyrate is commonly known to be related to the epithelial barrier function and intestinal inflammation. However, it is still unknown whether sodium acetate/sodium butyrate could alleviate diarrhea in animals. The present study is carried out to explore the potential effects of sodium acetate/sodium butyrate on lipopolysaccharide-induced diarrhea in mice. Fifty ICR mice were randomly divided into control (C), LPS-induced (L), and sodium acetate/sodium butyrate (D, B, A)-treated groups. Serum and intestine samples were collected to examine inflammatory cytokines, antioxidant levels, relative gene expressions via real-time PCR assay, and gut microbiota changes through high-throughput sequencing. Results indicated that LPS decreased the villus height (p < 0.0001), increased the crypt depth (p < 0.05), and lowered the villus height to crypt depth ratio (p < 0.0001), while sodium acetate/sodium butyrate supplementation caused a significant increase in the villus height (p < 0.001), decrease in the crypt depth (p < 0.01), and increase in the villus height to crypt depth ratio (p < 0.001), especially. In mice treated with LPS, it was found that the serum level of IL-1ß, TNF-α (p < 0.001), and MDA (p < 0.01) was significantly higher; however, sodium acetate/sodium butyrate supplementation significantly reduced IL-1ß (p < 0.001), TNF-α (p < 0.01), and MDA (p < 0.01), respectively. A total of 19 genera were detected among mouse groups; LPS challenge decreased the abundance of Lactobacillus, unidentified F16, unidentified_S24-7, Adlercreutzia, Ruminococcus, unclassified Pseudomonadales, [Ruminococcus], Acetobacter, cc 1, Rhodococcus, unclassified Comamonadaceae, Faecalibacterium, and Cupriavidus, while increased Shigella, Rhodococcus, unclassified Comamonadaceae, and unclassified Pseudomonadales in group L. Interestingly, sodium acetate/sodium butyrate supplementation increased Lactobacillus, unidentified F16, Adlercreutzia, Ruminococcus, [Ruminococcus], unidentified F16, cc 115, Acetobacter, Faecalibacterium, and Cupriavidus, while decreased Shigella, unclassified Enterobacteriaceae, unclassified Pseudomonadales, Rhodococcus, and unclassified Comamonadaceae. LPS treatment upregulated the expressions of ZO-1 (p < 0.01) and NLRP3 (p < 0.0001) genes in mice; however, sodium acetate/sodium butyrate solution supplementation downregulated the expressions of ZO-1 (p < 0.05) and NLRP3 (p < 0.05) genes in treated mice. Also, the LPS challenge clearly downregulated the expression of Occludin (p < 0.001), Claudin (p < 0.0001), and Caspase-1 (p < 0.0001) genes, while sodium acetate/sodium butyrate solution supplementation upregulated those gene expressions in treated groups. The present study revealed that sodium acetate/sodium butyrate supplementation alleviated LPS-induced diarrhea in mice via enriching beneficial bacterium and decreasing pathogens, which could regulate oxidative damages and inflammatory responses via NLRP3/Caspase-1 signaling. The current results may give insights into the prevention and treatment of diarrhea.

8.
Animals (Basel) ; 12(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36009620

ABSTRACT

Tibial dyschondroplasia debilities apoptotic and inflammasomal conditions that can further destroy chondrocytes. Inflammasomes are specialized protein complexes that process pro-inflammatory cytokines, e.g., interleukin-1ß (IL-1ß) and IL-18. Moreover, there is mounting evidence that many of the signaling molecules that govern programmed cell death also affect inflammasome activation in a cell-intrinsic way. During the last decade, apoptotic functions have been described for signaling molecules involving inflammatory responses and cell death pathways. Considering these exceptional developments in the knowledge of processes, this review gives a glimpse of the significance of these two pathways and their connected proteins in tibial dyschondroplasia. The current review deeply elaborates on the elevated level of signaling mediators of mitochondrial-mediated apoptosis and the inflammasome. Although investigating these pathways' mechanisms has made significant progress, this review identifies areas where more study is especially required. It might lead to developing innovative therapeutics for tibial dyschondroplasia and other associated bone disorders, e.g., osteoporosis and osteoarthritis, where apoptosis and inflammasome are the significant pathways.

9.
Phytomedicine ; 104: 154296, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35809377

ABSTRACT

BACKGROUND: Apoptosis is thought to be involved in all processes, including normal cell cycle, immune system, atrophy, embryonic development, and chemical-induced cellular damage. However, if the normal apoptotic process fails, the results might be disastrous, e.g., chondrocytes damage in tibial dyschondroplasia (TD). TD is a worldwide issue in the poultry sector due to thiram toxicity. Thiram (Tetramethyl thiuram disulfide) is a dithiocarbamate pesticide and fungicide commonly used in horticulture to treat grains meant for seed protection and preservation. PURPOSE: According to prior studies, chlorogenic acid (CGA) is becoming essential for regulating apoptosis. But still, the specific role of CGA in chondrocyte cells remains unclear. The present study explored the molecular mechanism of CGA on chondrocytes' apoptosis with B-cell lymphoma 2 signaling under the effect of miR-460a. METHODS: An in vivo and in vitro study was performed according to our previously developed methodology. Flow cytometry, western blotting, reverse transcription-quantitative polymerase chain reaction, and immunofluorescence assay were used to investigate the involvement of apoptosis and inflammasome related pathways. RESULTS: The CGA decreased the apoptosis rate with the deactivation of miR-460a, accompanied by the activation of Bcl-2. The high expression of miR-460a reduced the cell viability of chondrocytes in vitro and in vivo, that led to the interleukin-1ß production. While the apoptotic executioners (caspase-3 and caspase-7) acted upstream in miR-460a overexpressing cells, and its depletion downgraded these executioners. The CGA administrated cells negatively regulated miR-460a expression and thus indicating the deactivation of the apoptotic and inflammasome related pathways. CONCLUSION: Chlorogenic acid had a negative effect on miR-460a, setting off specific feedback to regulate apoptotic and inflammasome pathways, which might be a key feature for chondrocytes' survival.


Subject(s)
MicroRNAs , Osteochondrodysplasias , Apoptosis , Caspase 3/metabolism , Caspase 7/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Chondrocytes , Humans , Inflammasomes/metabolism , Interleukin-1beta/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteochondrodysplasias/chemically induced , Osteochondrodysplasias/drug therapy , Osteochondrodysplasias/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Thiram/adverse effects , Thiram/metabolism
10.
Front Microbiol ; 13: 877280, 2022.
Article in English | MEDLINE | ID: mdl-35875530

ABSTRACT

It is critical to characterize changes in the structure and composition of the host fungal community in natural Cryptosporidium infection, because it gives the possible overview of gut microbiome in host homeostasis and disease progression. A total of 168 rectal fecal samples were collected and examined using nPCR. The positive samples were double-checked using 18S rDNA high-throughput sequencing. After confirmation, ITS high-throughput sequencing was utilized to investigate the fungal community's response to natural Cryptosporidium infection. Results showed that a total of three positive samples (1.79%) were identified with an increased abundance of fungi associated with health hazards, such as class Dothideomycetes, families, i.e., Cladosporiaceae, Glomerellaceae, and genera, i.e., Wickerhamomyces, Talaromyces, Cladosporium, Dactylonectria, and Colletotrichum. On the contrary, taxa associated with favorable physiological effects on the host were shown to have the reverse impact, such as families, i.e., Psathyrellaceae, Pseudeurotiaceae and genera (Beauveria, Nigrospora, and Diversispora). For the first time, we evaluated the condition of natural Cryptosporidium infection in horses in Wuhan, China, and discovered distinct variations in the fungal microbiome in response to natural infection. It might prompt a therapy or prevention strategy to apply specific fungal microorganisms that are probably responsible for decreased susceptibility or increased resistance to infection.

11.
Front Vet Sci ; 9: 875629, 2022.
Article in English | MEDLINE | ID: mdl-35711790

ABSTRACT

Burns cause many significant changes in metabolism and inflammatory reactions, leading to poor regeneration in animals and humans. A list of medicines to treat burns is available in the market. But due to the high cost of these medicines, these are unaffordable, especially for farmers of middle-class families of Africa and Asia. Therefore, a low-cost complementary treatment has always been a topic of many researchers, and there is a dire need of time for the welfare of animals to save them. The current study was planned to scrutinize the therapeutic effects of Manuka honey and Nitrofurazone ointments on full-thickness burn wounds in the rabbit model. The healing efficacy was performed through wound contraction rate, hematological analysis, the thickness of dermis and epidermis, and collagen content percentage. Histopathology was performed after taking biopsy samples at the end of the research. Based on statistical analysis using wound healing time (days, D), the combination (MO + NT) resulted in a shorter period (27 D ± 1) than the average healing time of controlled (36 ± 2), Manuka ointment (31.33 D ± 1.52), and Nitrofurazone ointment (32 ± 1). A significant decrease in the count of red blood cell (RBC), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) in all treatments was noticed mainly in MO + NT. Furthermore, burns induced a significant difference (p < 0.05) in the white blood cells (WBCs) count levels in the MO-treated group. While the level of platelets (PLTs) was not significantly different from the healthy control group. Histopathological assessment (epithelialization, fibrosis, and angiogenesis) of skin showed burn healing to be better in MO and MO + NT groups. In conclusion, the composite of Manuka honey with Nitrofurazone led to the faster recovery than other treatments.

12.
Front Vet Sci ; 9: 900480, 2022.
Article in English | MEDLINE | ID: mdl-35720840

ABSTRACT

Staphylococcus aureus (S. aureus) has become a leading animal and public health pathogen that keeps on transferring from one host to other, giving rise to newer strains by genetic shifts. The current study was designed to investigate the epidemiology and genetic relatedness of mecA gene in S. aureus isolated from pets, immediate individuals in contact with pets, and veterinary clinic environments. A total of n = 300 samples were collected from different veterinary hospitals in Pakistan using convenience sampling. The collected samples were subjected to microbiological and biochemical examination for the isolation of S. aureus. Methicillin resistance was investigated by both phenotypically using oxacillin disk diffusion assay and by genotypically targeting mecA gene by PCR. PCR amplicons were subjected for sequencing by Sanger method of sequencing, which were subsequently submitted to NCBI GenBank under the accession numbers MT874770, MT874771, and MT874772. Sequence evolutionary analysis and mecA gene characterization was done using various bioinformatics tools. Overall, 33.66% mecA genes harboring S. aureus strains were isolated from all sources (33.33% from pets, 46.0% from surrounding, and 28.0% from immediate contact individuals). The bioinformatics analysis noted that one SNP was identified at position c.253C>A (Transvertion). The phylogenetic tree (two clades) of S. aureus mecA revealed a possibility of inter-transmission of disease between the environment and pets. Frequency of adenine and thymine nucleotide in motifs were found to be the same (0.334). Cytosine and guanine frequency were also the same (0.166). Threonine was replaced by asparagine (p.T84D) in each sample of cat, environment, and human. On the other hand, protein structures ofcat-1 and cat-2 proteins were found identical while cat-3, environmental, and human proteins shared identical structures. The study thus concludes rising circulation of methicillin-resistant S. aureus (MRSA) strains in animal-human-environment interfaces, forecasting the development of novel strains withmodified range of resistance.

13.
Curr Drug Deliv ; 20(1): 89-97, 2022.
Article in English | MEDLINE | ID: mdl-35418284

ABSTRACT

INTRODUCTION: Clarithromycin (antibiotic), due to its narrow absorption window in the gastrointestinal tract, was taken as a model drug. MATERIALS AND METHODS: Focusing on the efficient drug delivery system, floating tablets that remain buoyant over gastric fluid for 24 hrs were produced by adopting the melt mold method using beeswax, gelucire, and oleic acid. To modulate the release pattern, a different concentration of 48/16 of beeswax and gelucire was used. RESULTS: To evaluate and characterize the final product, several tests, including the percentage recovery, in-vitro release studies, clarithromycin loading, scanning electron microscopy, differential scanning calorimeter, X-ray powder diffractometry, fourier transform infrared spectroscopy, weight variation, hardness, and friability, were carried out. Regarding the results, the encapsulation efficiency of the floating tablets was 39.5% to 59%, having weight variation with and without gelucire as 48/16 0.09525±0.0032g, and 0.09527±0.00286g to 0.0957±0.00321g, respectively. Clarithromycin release was controlled by using hydrophobic beeswax and hydrophilic gelucire 48/16. X-ray powder diffractometry, differential scanning calorimeter, and fourier transform infrared spectroscopy confirmed the absence of drug-polymer interaction, and exhibited amorphous and crystalline form of the drug after encapsulation. Drug release kinetics was determined by applying different models, such as zero-order, first-order model, Higuchi, and Korsemeyer-Pappas model. All formulations followed the Korsmeyer- Peppas model at 1.2 pH. CONCLUSION: Gastroretentive drug delivery systems were produced by using melt molding technique. In vitro dissolution represents the sustained release of the drug from the formulation.


Subject(s)
Clarithromycin , Oleic Acid , Powders , Anti-Bacterial Agents , Drug Liberation , Tablets/chemistry , Delayed-Action Preparations/chemistry , Solubility
14.
Front Chem ; 10: 805913, 2022.
Article in English | MEDLINE | ID: mdl-35308785

ABSTRACT

Chromium (VI) in tannery effluent is one of the major environmental concerns for the environmentalists due to the hazardous nature of Cr(VI) ions. To reduce Cr(VI) to Cr(III) as an innocuous moiety, pure and I-doped ZnO was grafted over the etched surface of glass beads by successive ionic layer adsorption and reaction (SILAR). Powdered, pure, and I-doped ZnO scrapped from the surface of glass beads was characterized for crystallinity, morphology, and elemental composition by XRD, SEM, TEM, and EDX. The optical properties of both photocatalysts revealed that owing to optimized iodine doping of ZnO, reduction in the bandgap was observed from 3.3 to 2.9 eV. The crystalline nano-bricks of I:ZnO adhered to glass beads were investigated to have remarkable capability to harvest sunlight in comparison to intrinsic ZnO nanodiscs. The thermal stability of I:ZnO was also found to be much improved due to doping of ZnO. The photocatalytic activities of ZnO/GB and I:ZnO/GB were compared by extent of reduction of Cr(VI) under direct natural sunlight (600-650 KWh/m2). The disappearance of absorbance peaks associated with Cr(VI) after treatment with I:ZnO/GB confirmed higher photocatalytic activity of I:ZnO/GB. The reaction parameters of solar photocatalytic reduction, i.e., initial pH (5-9), initial concentration of Cr(VI) (10-50 ppm), and solar irradiation time (1-5 h) were optimized using response surface methodology. The solar photocatalytic reduction of Cr(VI) to Cr(III) present in real tannery effluent was examined to be 87 and 98%, respectively, by employing ZnO/GB and I:ZnO/GB as solar photocatalysts. The extent of reduction was also confirmed by complexation of Cr(VI) and Cr(III) present in treated and untreated tannery waste with 1, 5-diphenylcarbazide. The results of AAS and UV/vis spectroscopy for the decrease in concentration of Cr also supported the evidence of higher efficiency of I:ZnO/GB for reduction of Cr(VI) in tannery effluent. Reusability of the fabricated photocatalyst was assessed for eight cycles, and magnificent extent of reduction of Cr(VI) indicated its high efficiency. Conclusively, I:ZnO/GB is a potential and cost-effective candidate for Cr(VI) reduction in tannery effluent under natural sunlight.

15.
Microbiol Spectr ; : e0120521, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35080439

ABSTRACT

Bacillus amyloliquefaciens is a nonpathogenic microorganism whose highly active amylase is widely isolated from soil and plants. TL106 is an isolate of Bacillus amyloliquefaciens isolated from cold- and disease-resistant Tibetan pigs in Linzhi, Tibet. Here, we report that TL106 not only could survive in acidic environments, high bile salt concentrations, and high-temperature conditions but also was resistant to antibiotics. It significantly improved the growth performance of weaned piglets, especially in the prevention of diarrhea. The crude fiber and crude ash digestibility in weaned piglets after TL106 administration was considerably higher than that in other groups. The results of 16S rRNA sequencing conveyed that TL106 stabilized gut microbiota that was disturbed by the weaning process with an increased level of Lachnospiraceae, Peptococcaceae.rc4_4, Erysipelotrichaceae.L7A_E11, and Mollicutes.RF39. Hence, this study proved that Bacillus amyloliquefaciens TL106 might be a candidate for antibiotics in Duroc×Landrace×Yorkshire weaned piglets. IMPORTANCE Antibiotics are often used to promote animal growth and prevent diarrhea in weanling piglets. Nevertheless, intestinal pathogenic bacterial resistance and drug residues caused by antibiotic overuse are worthy of concern and demand an urgent solution. Bacillus amyloliquefaciens TL106 has been isolated from cold- and disease-resistant Tibetan pigs in Linzhi, Tibet. It significantly improved the growth performance, decreased diarrhea, increased the absorption of crude substances, and regulated the gut flora homeostasis in Duroc×Landrace×Yorkshire weaned piglets. As an antibiotic candidate, TL106 perfectly displayed its probiotic potential and pollution-free properties.

16.
Front Microbiol ; 13: 1067284, 2022.
Article in English | MEDLINE | ID: mdl-36704547

ABSTRACT

Staphylococcus aureus is recognized as commensal as well as opportunistic pathogen of humans and animals. Methicillin resistant strain of S. aureus (MRSA) has emerged as a major pathogen in hospitals, community and veterinary settings that compromises the public health and livestock production. MRSA basically emerged from MSSA after acquiring SCCmec element through gene transfer containing mecA gene responsible for encoding PBP-2α. This protein renders the MRSA resistant to most of the ß-lactam antibiotics. Due to the continuous increasing prevalence and transmission of MRSA in hospitals, community and veterinary settings posing a major threat to public health. Furthermore, high pathogenicity of MRSA due to a number of virulence factors produced by S. aureus along with antibiotic resistance help to breach the immunity of host and responsible for causing severe infections in humans and animals. The clinical manifestations of MRSA consist of skin and soft tissues infection to bacteremia, septicemia, toxic shock, and scalded skin syndrome. Moreover, due to the increasing resistance of MRSA to number of antibiotics, there is need to approach alternatives ways to overcome economic as well as human losses. This review is going to discuss various aspects of MRSA starting from emergence, transmission, epidemiology, pathophysiology, disease patterns in hosts, novel treatment, and control strategies.

17.
Nanotechnology ; 32(48)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34320471

ABSTRACT

The COVID-19 outbreak is creating severe impressions on all facets of the global community. Despite strong measures worldwide to try and re-achieve normalcy, the ability of SARS-CoV-2 to survive sturdy ecological settings may contribute to its rapid spread. Scientists from different aspects of life are working together to develop effective treatment strategies against SARS-CoV-2. Apart from using clinical devices for patient recovery, the key focus is on developing antiviral drugs and vaccines. Given the physical size of the SARS-CoV-2 pathogen and with the vaccine delivery platform currently undergoing clinical trials, the link between nanotechnology is clear, and previous antiviral research using nanomaterials confirms this link. Nanotechnology based products can effectively suppress various pathogens, including viruses, regardless of drug resistance, biological structure, or physiology. Thus, nanotechnology is opening up new dimensions for developing new strategies for diagnosing, preventing, treating COVID-19 and other viral ailments. This article describes the application of nanotechnology against the COVID-19 virus in terms of therapeutic purposes and vaccine development through the invention of nanomaterial based substances such as sanitizers (handwashing agents and surface disinfectants), masks and gowns, amongst other personal protective equipment, diagnostic tools, and nanocarrier systems, as well as the drawbacks and challenges of nanotechnology that need to be addressed.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19 Vaccines/therapeutic use , Drug Delivery Systems , Nanostructures/therapeutic use , Pandemics/prevention & control , SARS-CoV-2/metabolism , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/therapy , Humans , Nanotechnology
19.
Bionanoscience ; 11(2): 621-632, 2021.
Article in English | MEDLINE | ID: mdl-33520589

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are the most produced nanomaterial for food additives, pigments, photocatalysis, and personal care products. These nanomaterials are at the forefront of rapidly developing indispensable nanotechnology. In all these nanomaterials, titanium dioxide (TiO2) is the most common nanomaterial which is being synthesized for many years. These nanoparticles of TiO2 are widely used at the commercial level, especially in cosmetic industries. High usage in such a way has increased the toxicological consequences of the human population. Several studies have shown that TiO2 NPs accumulated after oral exposure or inhalation in the alimentary canal, lungs, heart, liver, spleen, cardiac muscle, and kidneys. Additionally, in mice and rats, they disturb glucose and lipid homeostasis. Moreover, TiO2 nanoparticles primarily cause adverse reactions by inducing oxidative stress that leads to cell damage, inflammation, genotoxicity, and adverse immune responses. The form and level of destruction are strongly based on the physical and chemical properties of TiO2 nanoparticles, which administer their reactivity and bioavailability. Studies give indications that TiO2 NPs cause both DNA strand breaks and chromosomal damages. The effects of genotoxicity do not depend only on particle surface changes, size, and exposure route, but also relies on the duration of exposure. Most of these effects may be because of a very high dose of TiO2 NPs. Despite increased production and use, epidemiological data for TiO2 NPs is still missing. This review discusses previous research regarding the impact of TiO2 NP toxicity on human health and highlights areas that require further understanding in concern of jeopardy to the human population. This review is important to point out areas where extensive research is needed; thus, their possible impact on individual health should be investigated in more details.

20.
Genes (Basel) ; 11(12)2020 12 21.
Article in English | MEDLINE | ID: mdl-33371298

ABSTRACT

Probiotic bacteria are receiving increased attention due to the potential benefits to their hosts. Plateau yaks have resistance against diseases and stress, which is potentially related to their inner probiotics. To uncover the potential functional genes of yak probiotics, we sequenced the whole genome of Lactobacillus sakei (L. sakei). The results showed that the genome length of L. sakei was 1.99 Mbp, with 1943 protein coding genes (21 rRNA, 65 tRNA, and 1 tmRNA). There were three plasmids found in this bacteria, with 88 protein coding genes. EggNOG annotation uncovered that the L. sakei genes were found to belong to J (translation, ribosomal structure, and biogenesis), L (replication, recombination, and repair), G (carbohydrate transport and metabolism), and K (transcription). GO annotation showed that most of the L. sakei genes were related to cellular processes, metabolic processes, biological regulation, localization, response to stimulus, and organization or biogenesis of cellular components. CAZy annotation found that there were 123 CAZys in the L. sakei genome, with glycosyl transferases and glycoside hydrolases. Our results revealed the genome characteristics of L. sakei, which may give insight into the future employment of this probiotic bacterium for its functional benefits.


Subject(s)
Cattle/microbiology , Genome, Bacterial , Latilactobacillus sakei/genetics , Probiotics , Acclimatization , Altitude , Animals , Cattle/physiology , DNA, Bacterial/genetics , Feces/microbiology , Latilactobacillus sakei/isolation & purification , Molecular Sequence Annotation , Phylogeny , Plasmids/genetics , Tibet
SELECTION OF CITATIONS
SEARCH DETAIL
...