Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 11(8)2019 Aug 02.
Article in English | MEDLINE | ID: mdl-31382396

ABSTRACT

Essential oils are complex volatile compounds, extracted from specific plant species, with promising therapeutic potentials. However, their volatile nature presents a major hindrance in using them as therapeutic agents. In the current study, we successfully encapsulated oregano essential oil (OEO) into Poly (l-lactic acid-co-e-caprolactone) /Silk Fibroin (PLCL/SF) polymers through electrospinning. The nanofibrous membrane (NF) was fabricated and characterized for various physico-chemical and biological attributions. Homogenous and bead free morphology was confirmed by scanning electron microscopy (SEM). Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) confirmed the successful loading of OEO and its physical interaction with the blend of PLCL/SF. Moreover, thermogravimetric analysis (TGA) also confirmed the successful loading and thermostability of the OEO. Although a significant change was noted in tensile strength due to the loading of OEO, the mechanical behaviour still falls into the acceptable ranges required for skin tissue engineering. Similarly, fabricated material was evaluated for its biological significance. Liquid chromatography-mass spectrometry (LC-MS) was employed to determine the release behaviour of OEO from electrospun membranes. LC-MS data, noted for 48 h, confirmed the biphasic release of OEO. Furthermore, NF membranes have shown strong antioxidant and anti-tumor activities. This material is promising and can be implanted to avoid the recurrence of the tumor after its surgical removal.

2.
Colloids Surf B Biointerfaces ; 144: 108-117, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27085042

ABSTRACT

Bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In present study we have blended the Vitamin B5 (50mg) with 8% P(LLA-CL) and P(LLA-CL)/SF solutions and produced aligned electrospun nanofiber mashes and characterized the material for its physiochemical and mechanical characteristics. The vitamin loaded composites nanofibers showed tensile strength of 8.73±1.38 and 8.4±1.37 in P(LLA-CL)/Vt and P(LLA-CL)/SF/Vt nanofibers mashes, respectively. By the addition of vitamin B5 the P(LLA-CL) nanofibers become hydrophilic and the contact angle decreased from 96° to 0° in 6min of duration. The effect of vitamin B5 on Schwann cells proliferation and viability were analyzed by using MTT assay and the number of cells cultured on vitamin loaded nanofiber mashes was significantly higher than the without vitamin loaded nanofiber samples after 5th day (p<0.05) whereas, P (LLA-CL)/SF/Vt exhibit the consistently highest cell numbers after 7th days culture as compare to P (LLA-CL)/Vt. The in vitro vitamin release behavior was observed in PBS solution and released vitamin was calculated by revers phase HPLC method. The sustain release behavior of vitamin B5 were noted higher in P(LLA-CL)/Vt (80%) nanofibers as compared to P (LLA-CL)/SF/Vt (62%) nanofibers after 24h. The present work provided a basis for further studies of this novel aligned nanofibrous material in nerve tissue repair or regeneration.


Subject(s)
Nanofibers/chemistry , Pantothenic Acid/pharmacology , Polyesters/chemistry , Schwann Cells/cytology , Silk/chemistry , Tissue Engineering/methods , Animals , Bombyx , Cell Proliferation/drug effects , Cell Shape/drug effects , Drug Liberation , Fluorescence , Mice , Nanofibers/ultrastructure , Schwann Cells/drug effects , Spectroscopy, Fourier Transform Infrared , Water/chemistry
3.
J Mater Chem B ; 4(41): 6670-6679, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-32263522

ABSTRACT

Polypyrrole (Ppy), as a conductive polymer, is commonly used for nerve tissue engineering because of its good conductivity and non-cytotoxicity. To avoid the inconvenience of Ppy processing, it was coated on electrospun poly(l-lactic acid-co-ε-caprolactone)/silk fibroin (PLCL/SF) nanofibers via the in situ oxidative polymerization of pyrrole monomers in this study. Ppy-coated PLCL/SF membranes were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric (TG) analysis. The results confirmed the disposition of Ppy on the PLCL/SF nanofibers, and the nanofibers kept their nanofibrous morphology and thermal stability, in comparison to the untreated ones. The conductivities and water contact angles were evaluated as well, and indicated that the conductivity and hydrophilicity of Ppy-coated nanofibers were increased. Furthermore, this study showed that electrical stimulation (ES) promoted PC12 cell differentiation and axonal extension on Ppy-coated nanofibers. The MTT assay suggested that both Ppy and ES could promote Schwann cell (SC) proliferation. Immunofluorescence staining and real time-qPCR (RT-qPCR) testing demonstrated that ES could induce PC12 cell differentiation even without nerve growth factor (NGF) treatment, and moreover, Ppy coating increased the inducing effects on PC12 cell differentiation. The overall results indicated the promising potential of Ppy-coated PLCL/SF nanofibrous membranes for peripheral nerve repair and regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...