Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
2.
Sci Rep ; 13(1): 22806, 2023 12 20.
Article in English | MEDLINE | ID: mdl-38129418

ABSTRACT

Cardiovascular magnetic resonance (CMR) can accurately measure left ventricular (LV) mass, and several measures related to LV wall thickness exist. We hypothesized that prognosis can be used to select an optimal measure of wall thickness for characterizing LV hypertrophy. Subjects having undergone CMR were studied (cardiac patients, n = 2543; healthy volunteers, n = 100). A new measure, global wall thickness (GT, GTI if indexed to body surface area) was accurately calculated from LV mass and end-diastolic volume. Among patients with follow-up (n = 1575, median follow-up 5.4 years), the most predictive measure of death or hospitalization for heart failure was LV mass index (LVMI) (hazard ratio (HR)[95% confidence interval] 1.16[1.12-1.20], p < 0.001), followed by GTI (HR 1.14[1.09-1.19], p < 0.001). Among patients with normal findings (n = 326, median follow-up 5.8 years), the most predictive measure was GT (HR 1.62[1.35-1.94], p < 0.001). GT and LVMI could characterize patients as having a normal LV mass and wall thickness, concentric remodeling, concentric hypertrophy, or eccentric hypertrophy, and the three abnormal groups had worse prognosis than the normal group (p < 0.05 for all). LV mass is highly prognostic when mass is elevated, but GT is easily and accurately calculated, and adds value and discrimination amongst those with normal LV mass (early disease).


Subject(s)
Heart Failure , Hypertrophy, Left Ventricular , Humans , Prognosis , Heart Ventricles , Ventricular Remodeling , Ventricular Function, Left
3.
Open Heart ; 10(2)2023 09.
Article in English | MEDLINE | ID: mdl-37758654

ABSTRACT

BACKGROUND: Heart failure (HF), type 2 diabetes (T2D) and chronic kidney disease (CKD) commonly coexist. We studied characteristics, prognosis and healthcare utilisation of individuals with two of these conditions. METHODS: We performed a retrospective, population-based linked electronic health records study from 1998 to 2020 in England to identify individuals diagnosed with two of: HF, T2D or CKD. We described cohort characteristics at time of second diagnosis and estimated risk of developing the third condition and mortality using Kaplan-Meier and Cox regression models. We also estimated rates of healthcare utilisation in primary care and hospital settings in follow-up. FINDINGS: We identified cohorts of 64 226 with CKD and HF, 82 431 with CKD and T2D, and 13 872 with HF and T2D. Compared with CKD and T2D, those with CKD and HF and HF and T2D had more severe risk factor profile. At 5 years, incidence of the third condition and all-cause mortality occurred in 37% (95% CI: 35.9%, 38.1%%) and 31.3% (30.4%, 32.3%) in HF+T2D, 8.7% (8.4%, 9.0%) and 51.6% (51.1%, 52.1%) in HF+CKD, and 6.8% (6.6%, 7.0%) and 17.9% (17.6%, 18.2%) in CKD+T2D, respectively. In each of the three multimorbid groups, the order of the first two diagnoses was also associated with prognosis. In multivariable analyses, we identified risk factors for developing the third condition and mortality, such as age, sex, medical history and the order of disease diagnosis. Inpatient and outpatient healthcare utilisation rates were highest in CKD and HF, and lowest in CKD and T2D. INTERPRETATION: HF, CKD and T2D carry significant mortality and healthcare burden in combination. Compared with other disease pairs, individuals with CKD and HF had the most severe risk factor profile, prognosis and healthcare utilisation. Service planning, policy and prevention must take into account and monitor data across conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Renal Insufficiency, Chronic , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Electronic Health Records , Multimorbidity , Retrospective Studies , Risk Factors , Patient Acceptance of Health Care , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/therapy , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/therapy
4.
J Med Imaging (Bellingham) ; 10(2): 024007, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37009059

ABSTRACT

Purpose: Neural networks have potential to automate medical image segmentation but require expensive labeling efforts. While methods have been proposed to reduce the labeling burden, most have not been thoroughly evaluated on large, clinical datasets or clinical tasks. We propose a method to train segmentation networks with limited labeled data and focus on thorough network evaluation. Approach: We propose a semi-supervised method that leverages data augmentation, consistency regularization, and pseudolabeling and train four cardiac magnetic resonance (MR) segmentation networks. We evaluate the models on multiinstitutional, multiscanner, multidisease cardiac MR datasets using five cardiac functional biomarkers, which are compared to an expert's measurements using Lin's concordance correlation coefficient (CCC), the within-subject coefficient of variation (CV), and the Dice coefficient. Results: The semi-supervised networks achieve strong agreement using Lin's CCC ( > 0.8 ), CV similar to an expert, and strong generalization performance. We compare the error modes of the semi-supervised networks against fully supervised networks. We evaluate semi-supervised model performance as a function of labeled training data and with different types of model supervision, showing that a model trained with 100 labeled image slices can achieve a Dice coefficient within 1.10% of a network trained with 16,000+ labeled image slices. Conclusion: We evaluate semi-supervision for medical image segmentation using heterogeneous datasets and clinical metrics. As methods for training models with little labeled data become more common, knowledge about how they perform on clinical tasks, how they fail, and how they perform with different amounts of labeled data is useful to model developers and users.

5.
Pacing Clin Electrophysiol ; 46(9): 1141-1144, 2023 09.
Article in English | MEDLINE | ID: mdl-36790011

ABSTRACT

Effective rate-adaptive pacing may be difficult in the presence of atrial fibrillation (AF), and is important during high-intensity exercise. This case presents a 74-year-old elite cyclist with AF and a biventricular pacemaker after atrioventricular (AV) node ablation. He reported sudden breathlessness due to heart rate drops, caused by breaching the artefact threshold on the minute-ventilation sensor. He was exchanged to a generator with an impedance-derived contractility sensor (closed-loop stimulation), resulting in resolution of symptoms, and no further rate drops. This is the first description of the utility of closed-loop stimulation in high-intensity exercise.


Subject(s)
Atrial Fibrillation , Pacemaker, Artificial , Male , Humans , Aged , Electric Impedance , Heart Rate/physiology , Atrial Fibrillation/surgery , Cardiac Pacing, Artificial/methods
6.
Nat Med ; 29(1): 190-202, 2023 01.
Article in English | MEDLINE | ID: mdl-36646800

ABSTRACT

Primary aldosteronism (PA) due to a unilateral aldosterone-producing adenoma is a common cause of hypertension. This can be cured, or greatly improved, by adrenal surgery. However, the invasive nature of the standard pre-surgical investigation contributes to fewer than 1% of patients with PA being offered the chance of a cure. The primary objective of our prospective study of 143 patients with PA ( NCT02945904 ) was to compare the accuracy of a non-invasive test, [11C]metomidate positron emission tomography computed tomography (MTO) scanning, with adrenal vein sampling (AVS) in predicting the biochemical remission of PA and the resolution of hypertension after surgery. A total of 128 patients reached 6- to 9-month follow-up, with 78 (61%) treated surgically and 50 (39%) managed medically. Of the 78 patients receiving surgery, 77 achieved one or more PA surgical outcome criterion for success. The accuracies of MTO at predicting biochemical and clinical success following adrenalectomy were, respectively, 72.7 and 65.4%. For AVS, the accuracies were 63.6 and 61.5%. MTO was not significantly superior, but the differences of 9.1% (95% confidence interval = -6.5 to 24.1%) and 3.8% (95% confidence interval = -11.9 to 9.4) lay within the pre-specified -17% margin for non-inferiority (P = 0.00055 and P = 0.0077, respectively). Of 24 serious adverse events, none was considered related to either investigation and 22 were fully resolved. MTO enables non-invasive diagnosis of unilateral PA.


Subject(s)
Hyperaldosteronism , Positron Emission Tomography Computed Tomography , Humans , Adrenal Glands/diagnostic imaging , Adrenal Glands/surgery , Adrenal Glands/blood supply , Hyperaldosteronism/diagnostic imaging , Hyperaldosteronism/surgery , Prospective Studies , Retrospective Studies
7.
Heart ; 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104218

ABSTRACT

Magnetic Resonance Imaging (MRI) is increasingly a fundamental component of the diagnostic pathway across a range of conditions. Historically, the presence of a cardiac implantable electronic device (CIED) has been a contraindication for MRI, however, development of MR Conditional devices that can be scanned under strict protocols has facilitated the provision of MRI for patients. Additionally, there is growing safety data to support MR scanning in patients with CIEDs that do not have MR safety labelling or with MR Conditional CIEDs where certain conditions are not met, where the clinical justification is robust. This means that almost all patients with cardiac devices should now have the same access to MRI scanning in the National Health Service as the general population. Provision of MRI to patients with CIED, however, remains limited in the UK, with only half of units accepting scan requests even for patients with MR Conditional CIEDs. Service delivery requires specialist equipment and robust protocols to ensure patient safety and facilitate workflows, meanwhile demanding collaboration between healthcare professionals across many disciplines. This document provides consensus recommendations from across the relevant stakeholder professional bodies and patient groups to encourage provision of safe MRI for patients with CIEDs.

8.
Science ; 377(6603): eabq1841, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35699621

ABSTRACT

The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.


Subject(s)
B-Lymphocytes , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2 , T-Lymphocytes , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
9.
BMC Cardiovasc Disord ; 22(1): 140, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35365075

ABSTRACT

BACKGROUND: The life course accumulation of overt and subclinical myocardial dysfunction contributes to older age mortality, frailty, disability and loss of independence. The Medical Research Council National Survey of Health and Development (NSHD) is the world's longest running continued surveillance birth cohort providing a unique opportunity to understand life course determinants of myocardial dysfunction as part of MyoFit46-the cardiac sub-study of the NSHD. METHODS: We aim to recruit 550 NSHD participants of approximately 75 years+ to undertake high-density surface electrocardiographic imaging (ECGI) and stress perfusion cardiovascular magnetic resonance (CMR). Through comprehensive myocardial tissue characterization and 4-dimensional flow we hope to better understand the burden of clinical and subclinical cardiovascular disease. Supercomputers will be used to combine the multi-scale ECGI and CMR datasets per participant. Rarely available, prospectively collected whole-of-life data on exposures, traditional risk factors and multimorbidity will be studied to identify risk trajectories, critical change periods, mediators and cumulative impacts on the myocardium. DISCUSSION: By combining well curated, prospectively acquired longitudinal data of the NSHD with novel CMR-ECGI data and sharing these results and associated pipelines with the CMR community, MyoFit46 seeks to transform our understanding of how early, mid and later-life risk factor trajectories interact to determine the state of cardiovascular health in older age. TRIAL REGISTRATION: Prospectively registered on ClinicalTrials.gov with trial ID: 19/LO/1774 Multimorbidity Life-Course Approach to Myocardial Health- A Cardiac Sub-Study of the MCRC National Survey of Health and Development (NSHD).


Subject(s)
Cardiovascular Diseases , Magnetic Resonance Imaging , Aged , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/epidemiology , Health Surveys , Heart , Humans , Myocardium
10.
J Cardiovasc Magn Reson ; 24(1): 16, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35272664

ABSTRACT

BACKGROUND: Measurement of cardiac structure and function from images (e.g. volumes, mass and derived parameters such as left ventricular (LV) ejection fraction [LVEF]) guides care for millions. This is best assessed using cardiovascular magnetic resonance (CMR), but image analysis is currently performed by individual clinicians, which introduces error. We sought to develop a machine learning algorithm for volumetric analysis of CMR images with demonstrably better precision than human analysis. METHODS: A fully automated machine learning algorithm was trained on 1923 scans (10 scanner models, 13 institutions, 9 clinical conditions, 60,000 contours) and used to segment the LV blood volume and myocardium. Performance was quantified by measuring precision on an independent multi-site validation dataset with multiple pathologies with n = 109 patients, scanned twice. This dataset was augmented with a further 1277 patients scanned as part of routine clinical care to allow qualitative assessment of generalization ability by identifying mis-segmentations. Machine learning algorithm ('machine') performance was compared to three clinicians ('human') and a commercial tool (cvi42, Circle Cardiovascular Imaging). FINDINGS: Machine analysis was quicker (20 s per patient) than human (13 min). Overall machine mis-segmentation rate was 1 in 479 images for the combined dataset, occurring mostly in rare pathologies not encountered in training. Without correcting these mis-segmentations, machine analysis had superior precision to three clinicians (e.g. scan-rescan coefficients of variation of human vs machine: LVEF 6.0% vs 4.2%, LV mass 4.8% vs. 3.6%; both P < 0.05), translating to a 46% reduction in required trial sample size using an LVEF endpoint. CONCLUSION: We present a fully automated algorithm for measuring LV structure and global systolic function that betters human performance for speed and precision.


Subject(s)
Machine Learning , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results , Stroke Volume , Ventricular Function, Left
11.
Am J Cardiol ; 171: 132-139, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35305784

ABSTRACT

We compared speckle tracking echocardiography (STE) and feature tracking cardiovascular magnetic resonance (FT-CMR) in patients with hypertrophic cardiomyopathy (HC) with a varying extent of fibrosis as defined by late gadolinium enhancement to look at the level of agreement between methods and their ability to relate those to myocardial fibrosis. At 2 reference centers, 79 patients with HC and 16 volunteers (the control group) underwent STE and CMR with late gadolinium enhancement and FT-CMR. Patients were classified into 3 categories: no detectable, limited, and extensive fibrosis. Global longitudinal strain (GLS) and global radial strain (GRS) were derived using FT-CMR and STE. STE-derived GRS was decreased in all HC categories compared with the control group (p <0.001), whereas FT-CMR GRS was reduced only in patients with HC with fibrosis (p <0.05). Reduced STE-derived GLS was associated with extensive fibrosis (p <0.05) and a value less than -15.2% identified those with extensive fibrosis (sensitivity 79%, specificity 92%, area under the curve 0.863, 95% confidence interval [CI] 0.76 to 0.97, p <0.001). Inter-modality agreement was moderate for STE versus CMR-GLS (overall population intra-class correlation coefficient = 0.615, 95% CI 0.42 to 0.75, p <0.001; patients with HC 0.63, 0.42 to 0.76, p <0.001) and GRS (overall population intra-class correlation coefficient = 0.601, 95% CI 0.397 to 0.735, p <0.001). A low level of agreement for GRS was seen between methods in patients with HC. In conclusion, strain indexes measured using echocardiography and CMR are reduced in patients with HC compared with the control group and correlate well with the burden of myocardial fibrosis. Reduced STE-GLS can identify patients with extensive fibrosis, but whether there is an added value for risk stratification for sudden cardiac death remains to be determined.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Hypertrophic , Cardiomyopathy, Hypertrophic/diagnostic imaging , Contrast Media/pharmacology , Echocardiography , Fibrosis , Gadolinium/pharmacology , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods , Reproducibility of Results , Ventricular Function, Left
12.
JACC Clin Electrophysiol ; 8(2): 225-235, 2022 02.
Article in English | MEDLINE | ID: mdl-35210080

ABSTRACT

OBJECTIVES: The purpose of this study was to assess the performance and limitations of low-voltage zones (LVZ) localization by optimized late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) scar imaging in patients with cardiac implantable electronic devices (CIEDs). BACKGROUND: Scar evaluation by LGE-CMR can assist ventricular tachycardia (VT) ablation, but challenges with electroanatomical maps coregistration and presence of imaging artefacts from CIED limit accuracy. METHODS: A total of 10 patients underwent VT ablation and preprocedural LGE-CMR using wideband imaging. Scar was segmented from CMR pixel signal intensity maps using commercial software (ADAS-VT, Galgo Medical) with bespoke tools and compared with detailed electroanatomical maps (CARTO). Coregistration of EP and imaging-derived scar was performed using the aorta as a fiducial marker, and the impact of coregistration was determined by assessing intraobserver/interobserver variability and using computer simulations. Spatial smoothing was applied to assess correlation at different spatial resolutions and to reduce noise. RESULTS: Pixel signal intensity maps localized low-voltage zones (V <1.5 mV) with area under the receiver-operating characteristic curve: 0.82 (interquartile range [IQR]: 0.76-0.83), sensitivity 74% (IQR: 71%-77%), and specificity 78% (IQR: 73%-83%) and correlated with bipolar voltage (r = -0.57 [IQR: -0.68 to -0.42]) across patients. In simulations, small random shifts and rotations worsened LVZ localization in at least some cases. The use of the full aortic geometry ensured high reproducibility of LVZ localization (r >0.86 for area under the receiver-operating characteristic curve). Spatial smoothing improved localization of LVZ. Results for LVZ with V <0.5 mV were similar. CONCLUSIONS: In patients with CIEDs, novel wideband CMR sequences and personalized coregistration strategies can localize LVZ with good accuracy and may assist VT ablation procedures.


Subject(s)
Contrast Media , Tachycardia, Ventricular , Gadolinium , Humans , Magnetic Resonance Imaging/methods , Reproducibility of Results , Tachycardia, Ventricular/diagnostic imaging , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/surgery
13.
J Am Heart Assoc ; 11(4): e023849, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35132872

ABSTRACT

Background Global longitudinal shortening (GL-Shortening) and the mitral annular plane systolic excursion (MAPSE) are known markers in heart failure patients, but measurement may be subjective and less frequently reported because of the lack of automated analysis. Therefore, a validated, automated artificial intelligence (AI) solution can be of strong clinical interest. Methods and Results The model was implemented on cardiac magnetic resonance scanners with automated in-line processing. Reproducibility was evaluated in a scan-rescan data set (n=160 patients). The prognostic association with adverse events (death or hospitalization for heart failure) was evaluated in a large patient cohort (n=1572) and compared with feature tracking global longitudinal strain measured manually by experts. Automated processing took ≈1.1 seconds for a typical case. On the scan-rescan data set, the model exceeded the precision of human expert (coefficient of variation 7.2% versus 11.1% for GL-Shortening, P=0.0024; 6.5% versus 9.1% for MAPSE, P=0.0124). The minimal detectable change at 90% power was 2.53 percentage points for GL-Shortening and 1.84 mm for MAPSE. AI GL-Shortening correlated well with manual global longitudinal strain (R2=0.85). AI MAPSE had the strongest association with outcomes (χ2, 255; hazard ratio [HR], 2.5 [95% CI, 2.2-2.8]), compared with AI GL-Shortening (χ2, 197; HR, 2.1 [95% CI,1.9-2.4]), manual global longitudinal strain (χ2, 192; HR, 2.1 [95% CI, 1.9-2.3]), and left ventricular ejection fraction (χ2, 147; HR, 1.8 [95% CI, 1.6-1.9]), with P<0.001 for all. Conclusions Automated in-line AI-measured MAPSE and GL-Shortening can deliver immediate and highly reproducible results during cardiac magnetic resonance scanning. These results have strong associations with adverse outcomes that exceed those of global longitudinal strain and left ventricular ejection fraction.


Subject(s)
Artificial Intelligence , Heart Failure , Humans , Mitral Valve/diagnostic imaging , Prognosis , Reproducibility of Results , Stroke Volume , Systole , Ventricular Function, Left
14.
Eur Heart J ; 43(26): 2469-2478, 2022 07 07.
Article in English | MEDLINE | ID: mdl-34435642

ABSTRACT

AIMS: Many cardiac pacemakers and defibrillators are not approved by regulators for magnetic resonance imaging (MRI). Even following generator exchange to an approved magnetic resonance (MR)-conditional model, many systems remain classified 'non-MR conditional' due to the leads. This classification makes patient access to MRI challenging, but there is no evidence of increased clinical risk. We compared the effect of MRI on non-MR conditional and MR-conditional pacemaker and defibrillator leads. METHODS AND RESULTS: Patients undergoing clinical 1.5T MRI with pacemakers and defibrillators in three centres over 5 years were included. Magnetic resonance imaging protocols were similar for MR-conditional and non-MR conditional systems. Devices were interrogated pre- and immediately post-scan, and at follow-up, and adverse clinical events recorded. Lead parameter changes peri-scan were stratified by MR-conditional labelling. A total of 1148 MRI examinations were performed in 970 patients (54% non-MR conditional systems, 39% defibrillators, 15% pacing-dependent) with 2268 leads. There were no lead-related adverse clinical events, and no clinically significant immediate or late lead parameter changes following MRI in either MR-conditional or non-MR conditional leads. Small reductions in atrial and right ventricular sensed amplitudes and impedances were similar between groups, with no difference in the proportion of leads with parameter changes greater than pre-defined thresholds (7.1%, 95% confidence interval: 6.1-8.3). CONCLUSIONS: There was no increased risk of MRI in patients with non-MR conditional pacemaker or defibrillator leads when following recommended protocols. Standardizing MR conditions for all leads would significantly improve access to MRI by enabling patients to be scanned in non-specialist centres, with no discernible incremental risk.


Subject(s)
Defibrillators, Implantable , Pacemaker, Artificial , Electronics , Humans , Magnetic Resonance Imaging/adverse effects , Magnetic Resonance Spectroscopy
16.
Eur J Prev Cardiol ; 28(7): 738-746, 2021 07 10.
Article in English | MEDLINE | ID: mdl-34247225

ABSTRACT

AIMS: Remodelling of the cardiovascular system (including heart and vasculature) is a dynamic process influenced by multiple physiological and pathological factors. We sought to understand whether remodelling in response to a stimulus, exercise training, altered with healthy ageing. METHODS: A total of 237 untrained healthy male and female subjects volunteering for their first time marathon were recruited. At baseline and after 6 months of unsupervised training, race completers underwent tests including 1.5T cardiac magnetic resonance, brachial and non-invasive central blood pressure assessment. For analysis, runners were divided by age into under or over 35 years (U35, O35). RESULTS: Injury and completion rates were similar among the groups; 138 runners (U35: n = 71, women 49%; O35: n = 67, women 51%) completed the race. On average, U35 were faster by 37 minutes (12%). Training induced a small increase in left ventricular mass in both groups (3 g/m2, P < 0.001), but U35 also increased ventricular cavity sizes (left ventricular end-diastolic volume (EDV)i +3%; left ventricular end-systolic volume (ESV)i +8%; right ventricular end-diastolic volume (EDV)i +4%; right ventricular end-systolic volume (ESV)i +5%; P < 0.01 for all). Systemic aortic compliance fell in the whole sample by 7% (P = 0.020) and, especially in O35, also systemic vascular resistance (-4% in the whole sample, P = 0.04) and blood pressure (systolic/diastolic, whole sample: brachial -4/-3 mmHg, central -4/-2 mmHg, all P < 0.001; O35: brachial -6/-3 mmHg, central -6/-4 mmHg, all P < 0.001). CONCLUSION: Medium-term, unsupervised physical training in healthy sedentary individuals induces measurable remodelling of both heart and vasculature. This amount is age dependent, with predominant cardiac remodelling when younger and predominantly vascular remodelling when older.


Subject(s)
Exercise , Heart Ventricles , Adult , Diastole , Female , Heart , Heart Ventricles/diagnostic imaging , Humans , Male , Middle Aged , Stroke Volume , Systole , Ventricular Function, Left
17.
JACC Cardiovasc Imaging ; 14(11): 2123-2134, 2021 11.
Article in English | MEDLINE | ID: mdl-34147459

ABSTRACT

OBJECTIVES: The aim of this study was to define the variability of maximal wall thickness (MWT) measurements across modalities and predict its impact on care in patients with hypertrophic cardiomyopathy (HCM). BACKGROUND: Left ventricular MWT measured by echocardiography or cardiovascular magnetic resonance (CMR) contributes to the diagnosis of HCM, stratifies risk, and guides key decisions, including whether to place an implantable cardioverter-defibrillator (ICD). METHODS: A 20-center global network provided paired echocardiographic and CMR data sets from patients with HCM, from which 17 paired data sets of the highest quality were selected. These were presented as 7 randomly ordered pairs (at 6 cardiac conferences) to experienced readers who report HCM imaging in their daily practice, and their MWT caliper measurements were captured. The impact of measurement variability on ICD insertion decisions was estimated in 769 separately recruited multicenter patients with HCM using the European Society of Cardiology algorithm for 5-year risk for sudden cardiac death. RESULTS: MWT analysis was completed by 70 readers (from 6 continents; 91% with >5 years' experience). Seventy-nine percent and 68% scored echocardiographic and CMR image quality as excellent. For both modalities (echocardiographic and then CMR results), intramodality inter-reader MWT percentage variability was large (range -59% to 117% [SD ±20%] and -61% to 52% [SD ±11%], respectively). Agreement between modalities was low (SE of measurement 4.8 mm; 95% CI 4.3 mm-5.2 mm; r = 0.56 [modest correlation]). In the multicenter HCM cohort, this estimated echocardiographic MWT percentage variability (±20%) applied to the European Society of Cardiology algorithm reclassified risk in 19.5% of patients, which would have led to inappropriate ICD decision making in 1 in 7 patients with HCM (8.7% would have had ICD placement recommended despite potential low risk, and 6.8% would not have had ICD placement recommended despite intermediate or high risk). CONCLUSIONS: Using the best available images and experienced readers, MWT as a biomarker in HCM has a high degree of inter-reader variability and should be applied with caution as part of decision making for ICD insertion. Better standardization efforts in HCM recommendations by current governing societies are needed to improve clinical decision making in patients with HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Defibrillators, Implantable , Biomarkers , Cardiomyopathy, Hypertrophic/diagnostic imaging , Cardiomyopathy, Hypertrophic/therapy , Death, Sudden, Cardiac , Echocardiography , Humans , Predictive Value of Tests , Risk Assessment
18.
J Cardiovasc Magn Reson ; 23(1): 82, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34134696

ABSTRACT

BACKGROUND: Quantitative myocardial perfusion mapping using cardiovascular magnetic resonance (CMR) is validated for myocardial blood flow (MBF) estimation in native vessel coronary artery disease (CAD). Following coronary artery bypass graft (CABG) surgery, perfusion defects are often detected in territories supplied by the left internal mammary artery (LIMA) graft, but their interpretation and subsequent clinical management is variable. METHODS: We assessed myocardial perfusion using quantitative CMR perfusion mapping in 38 patients with prior CABG surgery, all with angiographically-proven patent LIMA grafts to the left anterior descending coronary artery (LAD) and no prior infarction in the LAD territory. Factors potentially determining MBF in the LIMA-LAD myocardial territory, including the impact of delayed contrast arrival through the LIMA graft were evaluated. RESULTS: Perfusion defects were reported on blinded visual analysis in the LIMA-LAD territory in 27 (71%) cases, despite LIMA graft patency and no LAD infarction. Native LAD chronic total occlusion (CTO) was a strong independent predictor of stress MBF (B = - 0.41, p = 0.014) and myocardial perfusion reserve (MPR) (B = - 0.56, p = 0.005), and was associated with reduced stress MBF in the basal (1.47 vs 2.07 ml/g/min; p = 0.002) but not the apical myocardial segments (1.52 vs 1.87 ml/g/min; p = 0.057). Extending the maximum arterial time delay incorporated in the quantitative perfusion algorithm, resulted only in a small increase (3.4%) of estimated stress MBF. CONCLUSIONS: Perfusion defects are frequently detected in LIMA-LAD subtended territories post CABG despite LIMA patency. Although delayed contrast arrival through LIMA grafts causes a small underestimation of MBF, perfusion defects are likely to reflect true reductions in myocardial blood flow, largely due to proximal native LAD disease.


Subject(s)
Coronary Artery Bypass , Mammary Arteries , Coronary Artery Bypass/adverse effects , Humans , Ischemia , Magnetic Resonance Spectroscopy , Mammary Arteries/diagnostic imaging , Mammary Arteries/surgery , Perfusion , Predictive Value of Tests
20.
JACC Cardiovasc Imaging ; 14(11): 2155-2166, 2021 11.
Article in English | MEDLINE | ID: mdl-33975819

ABSTRACT

OBJECTIVES: The purpose of this study was to detect cardiovascular changes after mild severe acute respiratory syndrome-coronavirus-2 infection. BACKGROUND: Concern exists that mild coronavirus disease 2019 may cause myocardial and vascular disease. METHODS: Participants were recruited from COVIDsortium, a 3-hospital prospective study of 731 health care workers who underwent first-wave weekly symptom, polymerase chain reaction, and serology assessment over 4 months, with seroconversion in 21.5% (n = 157). At 6 months post-infection, 74 seropositive and 75 age-, sex-, and ethnicity-matched seronegative control subjects were recruited for cardiovascular phenotyping (comprehensive phantom-calibrated cardiovascular magnetic resonance and blood biomarkers). Analysis was blinded, using objective artificial intelligence analytics where available. RESULTS: A total of 149 subjects (mean age 37 years, range 18 to 63 years, 58% women) were recruited. Seropositive infections had been mild with case definition, noncase definition, and asymptomatic disease in 45 (61%), 18 (24%), and 11 (15%), respectively, with 1 person hospitalized (for 2 days). Between seropositive and seronegative groups, there were no differences in cardiac structure (left ventricular volumes, mass, atrial area), function (ejection fraction, global longitudinal shortening, aortic distensibility), tissue characterization (T1, T2, extracellular volume fraction mapping, late gadolinium enhancement) or biomarkers (troponin, N-terminal pro-B-type natriuretic peptide). With abnormal defined by the 75 seronegatives (2 SDs from mean, e.g., ejection fraction <54%, septal T1 >1,072 ms, septal T2 >52.4 ms), individuals had abnormalities including reduced ejection fraction (n = 2, minimum 50%), T1 elevation (n = 6), T2 elevation (n = 9), late gadolinium enhancement (n = 13, median 1%, max 5% of myocardium), biomarker elevation (borderline troponin elevation in 4; all N-terminal pro-B-type natriuretic peptide normal). These were distributed equally between seropositive and seronegative individuals. CONCLUSIONS: Cardiovascular abnormalities are no more common in seropositive versus seronegative otherwise healthy, workforce representative individuals 6 months post-mild severe acute respiratory syndrome-coronavirus-2 infection.


Subject(s)
COVID-19 , Cardiovascular Abnormalities , Adolescent , Adult , Artificial Intelligence , Case-Control Studies , Contrast Media , Female , Gadolinium , Health Personnel , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Myocardium , Predictive Value of Tests , Prospective Studies , SARS-CoV-2 , Ventricular Function, Left , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...