Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Ophthalmol ; 103(7): 985-992, 2019 07.
Article in English | MEDLINE | ID: mdl-30249767

ABSTRACT

BACKGROUND: Pseudoexfoliation syndrome (PXF) is an idiopathic, elastogenesis-associated systemic disease characterised by amyloid-like material aggregates in the eye. Elevated plasma and aqueous humour (aqH) homocysteine (Hcy) is reportedly associated with PXF. This study is aimed to probe Hcy-mediated alterations in elastin expression. METHODOLOGY: Lens level of Hcy (total Hcy (tHcy)), mRNA expression of Eln, CBS and MTR in lens capsule, protein expression of elastin in aqH were estimated by enzyme immunoassay, quantitative PCR and western blot, respectively in PXF, PXF with glaucoma (PXF-G) cases, in comparison with cataract-alone disease controls. Human lens epithelial cells (hLECs) were exposed to Hcy and homocysteine thiolactone (HCTL) to evaluate elastin expression in vitro. Furthermore, elastin recombinant protein was incubated with Hcy and HCTL to assess secondary and tertiary structural modifications based on circular dichroism spectroscopy, spectrophotometric and SEM studies. RESULTS: The lens tHcy was significantly high in PXF (p=0.02) and PXF-G (p=0.009). Eln expression was elevated in PXF and PXF-G (p=0.0007). Elastin level in aqH was elevated in PXF (p=0.01) and PXF-G (p=0.002). Hcy (200 µM) and HCTL (1 µM) promoted elastin expression at mRNA level by 36-fold (p=0.02) and 10-fold (p=0.05), respectively, and at protein level by nearly two-fold in cultured hLECs. Secondary structure changes in elastin protein caused by Hcy were evident from 34.11% drop in α-helix and 6.17% gain in ß-sheet. Fluorescence, spectral assays and SEM analyses showed aggregation and amyloid formation of elastin with homocysteinylation. CONCLUSION: The study reveals that lens accumulation of Hcy associated with hyperhomocysteinaemia is characteristic of PXF that augments elastin expression. Hcy causes structural changes promoting elastin aggregation, thereby contributing to defective elastin in PXF and PXF-G.


Subject(s)
Aqueous Humor/metabolism , Elastin/genetics , Exfoliation Syndrome/genetics , Gene Expression Regulation , Homocysteine/genetics , Intraocular Pressure/physiology , Lens, Crystalline/metabolism , Blotting, Western , Elastin/biosynthesis , Exfoliation Syndrome/metabolism , Homocysteine/biosynthesis , Humans , Prospective Studies , RNA/genetics
2.
Biomed Pharmacother ; 98: 23-28, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29241071

ABSTRACT

Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma.


Subject(s)
Gene Silencing/physiology , Ornithine Decarboxylase/genetics , Retinoblastoma/genetics , Cell Cycle/genetics , Cell Line, Tumor , Humans , Matrix Metalloproteinase 2/genetics , Polyamines/metabolism , Prospective Studies , RNA, Messenger/genetics , RNA, Small Interfering/genetics
3.
Arch Med Res ; 48(3): 238-246, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28923325

ABSTRACT

BACKGROUND: Though the role of amino acids in Diabetes Mellitus is controversial, the beneficial effect of amino acids in Diabetes Mellitus has been reported based on its anti-glycating property and insulin potentiating effects. In the current study, we evaluated the ROS generation and VEGF expression in CHO-K1 cells induced by high glucose concentration. The effect of amino acids treatment was studied under this condition to evaluate the VEGF lowering effect. METHOD: CHO-K1 cells were treated various concentration of glucose (7 mmol, 17 mmol and 27 mmol) with and without free amino acids (5 mmol) or the amino acids mixture (AAM). Intracellular reactive oxygen species (ROS) was estimated by fluorescein dye (DCFDA), nitric oxide (NO) by Griess reaction, hydrogen peroxide (H2O2) by fluorimetry using Amplex red dye, super oxide dismutase (SOD) by spectrophotometry and VEGF by immunoblotting. RESULTS: High glucose condition significantly induced the expression of VEGF and this was reduced significantly by AAM treatment (p = 0.004). AAM also significantly decreased the cellular levels of ROS, NO, H2O2 as well as the SOD activity in CHO-K1 cells exposed to high glucose condition (p <0.05). CONCLUSION: The present study identified AAM as a potential VEGF lowering agent that intervenes at the level of oxidative stress in high glucose conditions as evaluated in CHO-K1 cells.


Subject(s)
Amino Acids/pharmacology , Glucose/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Animals , CHO Cells , Cricetulus , Glucose/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
4.
Bioinformation ; 10(7): 406-12, 2014.
Article in English | MEDLINE | ID: mdl-25187679

ABSTRACT

Lysyl oxidase (LOX) is a copper dependent amine oxidase which catalyses the cross linking of collagen and elastin towards the maturation of extracellular matrix. The expression and activity of LOX is known to vary under pathological conditions such as tumorigenesis, hyperhomocysteinemia, copper deficiency diseases, pseudoexfoliation syndrome and proliferative diabetic retinopathy. Despite the implication of LOX in many diseases, there is inadequate information about its structure. Therefore, we describe a molecular model of Human Lysyl Oxidase (LOX) with optimal copper orientation in the catalytic cavity for induced fit docking studies with potential modulators. The predicted model was found to be highly plausible as per the stereochemistry checks. Further, Molecular Dynamics (MD) studies also inferred the stability of the predicted structure. We performed Induced Fit Docking (IFD) of LOX modulators to the predicted structure and also validated the molecular interactions in implicit solvent model by calculating Molecular Mechanics Generalized Born Surface Area (MMGBSA). The IFD results strongly reveal that aspartic acid residues in the catalytic cavity as the key players in establishing interactions with small molecules. The insights from this study will aid in better exploration of the structure-function relationship of LOX.

5.
Arch Med Res ; 43(3): 173-82, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22609522

ABSTRACT

BACKGROUND AND AIMS: Amino acids reportedly increase the glucose uptake under high glucose conditions. However, there are controversies in the role of amino acids in diabetes mellitus. The present study explores the insulin signaling pathway involved in glucose uptake mediated by amino acids in CHO-K1 cells. METHODS: CHO-K1 cells were exposed to normal (7 mM) and high glucose (17 and 27 mM) with 100 nM insulin in the presence and absence of amino acid mixtures (AAM) in varying concentration (5 and 20 mM) followed by the assays, insulin receptor tyrosine kinase (IRTK) and phosphatidylinositol 3 kinase (PI3K) by autoradiography, protein kinase B (Akt) and glucose transporter (GLUT4) by Western blot and glycogen synthase (GS) by HPLC. RESULTS: The addition of 5 and 20 mM AAM significantly increased IRTK and PI3K activity (ANOVA p = 0.025, p = 0.003, respectively) with increasing glucose concentration. Addition of 5 mM AAM in the presence of normal glucose significantly increased the levels of phosphorylated Akt Ser473 (p = 0.02) with no significant change at high glucose. At 20 mM AAM there was a significant decrease in Akt phosphorylation (p = 0.035) that was increased by high glucose concentration. GLUT4 protein levels were increased with AAM (5 mM) along with increase in glycogen synthase activity at all glucose concentrations (p <0.05). CONCLUSIONS: Amino acids as a mixture is beneficial in augmenting insulin signaling pathway via IRTK/PI3K/GLUT4 pathway along with activation of GS in CHO-K1 cells, thereby ensuring increased intracellular glucose availability.


Subject(s)
Amino Acids/pharmacology , Glucose/pharmacology , Insulin/metabolism , Animals , CHO Cells , Cricetinae , Glucose Transporter Type 4/metabolism , Glycogen Synthase/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...