Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 61: 235-45, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838846

ABSTRACT

Nanomaterial mediated drug delivery represents a highly promising technique while its selectivity for reproductive healthcare application still remains a challenge. Since the delicate structure and functional role of reproductive tissue and gametes require the use of biocompatible nanomedicine/devices that do not affect fertility or the development of resulting offspring, this paper reports an intercomparative study of human spermatozoa interaction with three different nanoparticles (NPs) namely; iron oxide (Fe3O4), multiwalled carbon nanotubes (MWCNT) and graphene platelet nanopowder (GPN) to probe their suitability for drug delivery carrier and biomarker development purposes. ATR-FTIR results revealed that the sperm cell interaction with GPN had maximum amide I absorption for cell proteins and CO stretching of the peptide backbone at the band around 1657 cm(-1) followed by iron oxide NPs whereas MWCNT had no absorption. These results showed that GPN followed by iron oxide NPs got maximally entrapped by cell membrane protein with maximum disruption but MWCNT exhibited less entrapment but significantly higher internalization which was further validated by morphological analysis of these cell NP interaction by SEM, HRTEM and fluorescence microscopy. The uptake kinetics and penetration mechanism of NPs were examined with isothermal titration calorimetry (ITC). Interestingly, ITC results confirmed ATR-FTIR and morphological observations that the binding of GPN and Fe3O4 NPs with cell was exothermic and their bindings were favored by both negative enthalpy and positive entropy whereas in the case of MWCNT it was endothermic supported by unfavorable positive enthalpy and a favorable entropy change. Hence, it was evident that MWCNT had better internalization efficiency without disrupting the sperm lipid membrane compared to Fe3O4 and GPN NPs. Therefore, this work proposes CNT as promising means.


Subject(s)
Cell Membrane/metabolism , Ferric Compounds , Graphite , Nanotubes, Carbon/chemistry , Spermatozoa/metabolism , Adult , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Ferric Compounds/chemistry , Ferric Compounds/pharmacokinetics , Ferric Compounds/pharmacology , Graphite/chemistry , Graphite/pharmacokinetics , Graphite/pharmacology , Humans , Male , Spermatozoa/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...