Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 9(12)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291816

ABSTRACT

Selenium (Se) is a widely distributed trace element with dual (beneficial or toxic) effects for humans, animals, and plants. The availability of Se in the soil is reliant on the structure of the parental material and the procedures succeeding to soil formation. Anthropogenic activities affect the content of Se in the environment. Although plants are the core source of Se in animal and human diet, the role of Se in plants is still debatable. A low concentration of Se can be beneficial for plant growth, development, and ecophysiology both under optimum and unfavorable environmental conditions. However, excess Se results in toxic effects, especially in Se sensitive plants, due to changing structure and function of proteins and induce oxidative/nitrosative stress, which disrupts several metabolic processes. Contrary, Se hyperaccumulators absorb and tolerate exceedingly large amounts of Se, could be potentially used to remediate, i.e., remove, transfer, stabilize, and/or detoxify Se-contaminants in the soil and groundwater. Thereby, Se-hyperaccumulators can play a dynamic role in overcoming global problem Se-inadequacy and toxicity. However, the knowledge of Se uptake and metabolism is essential for the effective phytoremediation to remove this element. Moreover, selecting the most efficient species accumulating Se is crucial for successful phytoremediation of a particular Se-contaminated area. This review emphasizes Se toxicity in plants and the environment with regards to Se biogeochemistry and phytoremediation aspects. This review follows a critical approach and stimulates thought for future research avenues.

2.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33218014

ABSTRACT

Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.


Subject(s)
Gene Expression Regulation, Plant , Oxidative Stress , Photosynthesis , Plants/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
3.
Antioxidants (Basel) ; 9(8)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751256

ABSTRACT

Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.

4.
Physiol Mol Biol Plants ; 26(6): 1139-1154, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549679

ABSTRACT

Fungicides are widely used for controlling fungi in crop plants. However, their roles in conferring abiotic stress tolerance are still elusive. In this study, the effect of tebuconazole (TEB) and trifloxystrobin (TRI) on wheat seedlings (Triticum aestivum L. cv. Norin 61) was investigated under salt stress. Seedlings were pre-treated for 48 h with fungicide (1.375 µM TEB + 0.5 µM TRI) and then subjected to salt stress (250 mM NaCl) for 5 days. Salt treatment alone resulted in oxidative damage and increased lipid peroxidation as evident by higher malondialdehyde (MDA) and hydrogen peroxide (H2O2) content. Salt stress also decreased the chlorophyll and relative water content and increased the proline (Pro) content. Furthermore, salt stress increased the dehydroascorbate (DHA) and glutathione disulfide (GSSG) content while ascorbate (AsA), the AsA/DHA ratio, reduced glutathione (GSH) and the GSH/GSSG ratio decreased. However, a combined application of TEB and TRI significantly alleviated growth inhibition, photosynthetic pigments and leaf water status improved under salt stress. Application of TEB and TRI also decreased MDA, electrolyte leakage, and H2O2 content by modulating the contents of AsA and GSH, and enzymatic antioxidant activities. In addition, TEB and TRI regulated K+/Na+ homeostasis by improving the K+/Na+ ratio under salt stress. These results suggested that exogenous application of TEB and TRI rendered the wheat seedling more tolerant to salinity stress by controlling ROS and methylglyoxal (MG) production through the regulation of the antioxidant defense and MG detoxification systems.

5.
Plant Physiol Biochem ; 150: 109-120, 2020 May.
Article in English | MEDLINE | ID: mdl-32135476

ABSTRACT

We investigated vanillic acid-induced salt tolerance in tomato by exploring the plant defense systems. Ten-d-old tomato (Solanum lycopersicum L. cv. Pusa Ruby) seedlings were treated with salt (NaCl; 150 mM) and vanillic acid (VA; 40 and 50 µM) separately and in combination with salt. Salinity restricted seedlings growth, biomass accumulation, chlorophyll and carotenoid contents. Salt-induced osmotic stress was indicated by lower leaf relative water content (RWC) and elevated proline (Pro) content, where higher Na+/K+ ratio indicated the ionic toxicity. Tomato seedlings went through oxidative damage due to acute reactive oxygen species (ROS) production and lipoxygenase (LOX) activity and confirmed by higher lipid peroxidation and membrane damage under salinity. Conversely, exogenous VA reduced osmotic and ionic toxicity in stressed-seedlings by enhancing the RWC and Pro level, and lowering Na+/K+ ratio, respectively. Exogenous VA up-regulated the components of antioxidant defense system in salt-treated seedlings resulted in the reduction of ROS production, LOX activity and membrane damage in stressed-seedlings. Additionally, VA application caused the reduction of toxic methylglyoxal accumulation under salt stress through the enhancement of glyoxalase system. Thus, VA-induced alleviation of osmotic, ionic and oxidative stresses leading to improve plant growth and chlorophyll synthesis in stressed-seedlings. So, VA significantly improves salinity tolerance and plant growth performance by involving the actions of plant antioxidant defense and glyoxalase systems.


Subject(s)
Salt Tolerance , Solanum lycopersicum , Vanillic Acid , Solanum lycopersicum/drug effects , Solanum lycopersicum/enzymology , Oxidoreductases/metabolism , Salt Tolerance/drug effects , Seedlings/drug effects , Stress, Physiological/drug effects , Vanillic Acid/pharmacology
6.
Plants (Basel) ; 9(2)2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32033011

ABSTRACT

Cadmium (Cd) is a toxic heavy metal that enters the human food chain from the soil via plants. Increased Cd uptake and translocation in plants alters metabolism andreduces crop production. Maintaining crop yield therefore requires both soil remediation andenhanced plant tolerance to Cd. In this study, we investigated the effects of vanillic acid (VA) on Cd accumulation and Cd stress tolerance in rice (Oryza sativa L. cv. BRRI dhan54). Thirteen-day-old rice seedlings treated with CdCl2 (1.0 and 2.0 mM) for 72 h showed reduced growth, biomass accumulation, and water and photosynthetic pigment contents, as well as increased signs of oxidative stress (elevated levels of malondialdehyde, hydrogen peroxide, methylglyoxal, and lipoxygenase) and downregulated antioxidant and glyoxalase systems. Cadmium-induced changes in leaf relative turgidity, photosynthetic pigment content, ascorbate pool size, and glutathione content were suppressed by VA under both mild and severe Cd toxicity stress. The supplementation of VA under Cd stress conditions also increased antioxidant and glyoxylase enzyme activity. Vanillic acid also increased phytochelatin content and the biological accumulation factor, biological accumulation co-efficient, and Cd translocation factor. Vanillic acid, therefore appears to enhance Cd stress tolerance by increasing metal chelation and sequestration, by upregulating antioxidant defense and glyoxalase systems, and by facilitating nutrient homeostasis.

7.
Plants (Basel) ; 8(10)2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31635412

ABSTRACT

The present study investigated the role of tebuconazole (TEB) and trifloxystrobin (TRI) on cucumber plants (Cucumis sativus L. cv. Tokiwa) under salt stress (60 mM NaCl). The cucumber plants were grown semi-hydroponically in a glasshouse. Plants were exposed to two different doses of fungicides (1.375 µM TEB + 0.5 µM TRI and 2.75 µM TEB + 1.0 µM TRI) solely and in combination with NaCl (60 mM) for six days. The application of salt phenotypically deteriorated the cucumber plant growth that caused yellowing of the whole plant and significantly destructed the contents of chlorophyll and carotenoids. The oxidative damage was created under salinity by increasing the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolytic leakage (EL) resulting in the disruption of the antioxidant defense system. Furthermore, in the leaves, stems, and roots of cucumber plants increased Na+ content was observed under salt stress, whereas the K+/Na+ ratio and contents of K+, Ca2+, and Mg2+ decreased. In contrast, the exogenous application of TEB and TRI reduced the contents of MDA, H2O2, and EL by improving the activities of enzymatic and non-enzymatic antioxidants. In addition, ion homeostasis was regulated by reducing Na+ uptake and enhanced K+ accumulation and the K+/Na+ ratio after application of TEB and TRI. Therefore, this study indicates that the exogenous application of TEB and TRI enhanced salt tolerance in cucumber plants by regulating reactive oxygen speciesproduction and antioxidant defense systems.

8.
Antioxidants (Basel) ; 8(9)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505852

ABSTRACT

Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant defense system either detoxify or scavenge ROS and mitigate their deleterious effects. The Ascorbate-Glutathione (AsA-GSH) pathway, also known as Asada-Halliwell pathway comprises of AsA, GSH, and four enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, play a vital role in detoxifying ROS. Apart from ROS detoxification, they also interact with other defense systems in plants and protect the plants from various abiotic stress-induced damages. Several plant studies revealed that the upregulation or overexpression of AsA-GSH pathway enzymes and the enhancement of the AsA and GSH levels conferred plants better tolerance to abiotic stresses by reducing the ROS. In this review, we summarize the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants. We also focus on the defense mechanisms as well as molecular interactions.

9.
Antioxidants (Basel) ; 8(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480540

ABSTRACT

Salinity toxicity and the post-stress restorative process were examined to identify the salt tolerance mechanism in tomato, with a focus on the antioxidant defense and glyoxalase systems. Hydroponically grown 15 day-old tomato plants (Solanum lycopersicum L. cv. Pusa Ruby) were treated with 150 and 250 mM NaCl for 4 days and subsequently grown in nutrient solution for a further 2 days to observe the post-stress responses. Under saline conditions, plants showed osmotic stress responses that included low leaf relative water content and high proline content. Salinity induced oxidative stress by the over-accumulation of reactive oxygen species (H2O2 and O2•-) and methylglyoxal. Salinity also impaired the non-enzymatic and enzymatic components of the antioxidant defense system. On the other hand, excessive Na+ uptake induced ionic stress which resulted in a lower content of other minerals (K+, Ca2+, and Mg2+), and a reduction in photosynthetic pigment synthesis and plant growth. After 2 days in the normal nutrient solution, the plants showed improvements in antioxidant and glyoxalase system activities, followed by improvements in plant growth, water balance, and chlorophyll synthesis. The antioxidant and glyoxalase systems worked in concert to scavenge toxic reactive oxygen species (ROS), thereby reducing lipid peroxidation and membrane damage. Taken together, these findings indicate that tomato plants can tolerate salinity and show rapid post-stress recovery by enhancement of their antioxidant defense and glyoxalase systems.

10.
Physiol Mol Biol Plants ; 25(4): 865-879, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31402814

ABSTRACT

Soil acidity causes proton (H+) rhizotoxicity, inhibits plant growth and development, and is a major yield-limiting factor for wheat production worldwide. Therefore, we investigated the physiological and biochemical responses of wheat (Triticum aestivum L.) to acidity stress in vitro. Five popular wheat cultivars developed by Bangladesh Agricultural Research Institute (BARI), namely, BARI Gom-21, BARI Gom-24, BARI Gom-25, BARI Gom-26, and BARI Gom-30, were studied in growing media under four different pH levels (3.5, 4.5, 5.5, and 6.5). We evaluated the cultivars based on their relative water content, proline (Pro) content, growth, biomass accumulation, oxidative damage, membrane stability, and mineral composition, as well as the performance of the antioxidant defense and glyoxalase systems. Although decrements of pH significantly reduced the tested morphophysiological and biochemical attributes in all the cultivars, there was high variability among the cultivars in response to the varying pH of the growing media. Acidity stress reduced growth, biomass, water content, and chlorophyll content in all the cultivars. However, BARI Gom-26 showed the least damage, with the lowest H2O2 generation, lipid peroxidation (MDA), and greater membrane stability, which indicate better tolerance against oxidative damage. In addition, the antioxidant defense components, ascorbate (AsA) and glutathione (GSH), and their redox balance were higher in this cultivar. Maximum H2O2 scavenging due to upregulation of the antioxidant enzymes [AsA peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), GSH reductase (GR), GSH peroxidase (GPX), and GSH-S-transferase (GST)] was observed in BARI Gom-26, which also illustrated significant enhancement of methylglyoxal (MG) detoxification by upregulating glyoxalase I (Gly I) and glyoxalase II (Gly II). This study also showed that balanced essential nutrient content as well as lower toxic micronutrient content was found in BARI Gom-26. Therefore, considering the physiological and biochemical attributes and growth, we conclude that BARI Gom-26 can withstand acidity stress during the early seedling stage, by regulating the coordinated action of the antioxidant defense and glyoxalase systems as well as maintaining nutrient balance.

11.
Plants (Basel) ; 8(8)2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31349715

ABSTRACT

Quercetin (Qu) is a strong antioxidant among the phenolic compounds having physiological and biochemical roles in plants. Hence, we have studied the Qu evolved protection against salinity in tomato (Solanum lycopersicum L.). Salinity caused ionic toxicity by increasing Na+ content in seedlings along with nutritional starvation of K+, Ca2+, and Mg2+. While osmotic stress was detected by higher free proline (Pro) content and lower leaf relative water content (LRWC) in salt-stressed seedlings. Salt toxicity also induced higher H2O2 generation, malondialdehyde (MDA) content and lipoxygenase (LOX) activity as a sign of oxidative stress. Tomato seedlings suffered from methylglyoxal (MG) toxicity, degradation of chlorophyll, along with lower biomass accumulation and growth due to salt exposure. However, Qu application under salinity resulted in lower Na+/K+ due to reduced Na+ content, higher LRWC, increased Pro, and reduction of H2O2 and MDA content, and LOX activity, which indicated alleviation of ionic, osmotic, and oxidative stress respectively. Quercetin caused oxidative stress, lessening through the strengthening of both enzymatic and non-enzymatic antioxidants. In addition, Qu increased glutathione S-transferase activity in salt-invaded seedlings, which might be stimulated reactive oxygen species (ROS) scavenging along with higher GSH content. As a result, toxic MG was detoxified in Qu supplemented salt-stressed seedlings by increasing both Gly I and Gly II activities. Moreover, Qu insisted on better plant growth and photosynthetic pigments synthesis in saline or without saline media. Therefore, exogenous applied Qu may become an important actor to minimize salt-induced toxicity in crops.

12.
Int J Mol Sci ; 20(13)2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31261998

ABSTRACT

Polyamines (PAs) are found in all living organisms and serve many vital physiological processes. In plants, PAs are ubiquitous in plant growth, physiology, reproduction, and yield. In the last decades, PAs have been studied widely for exploring their function in conferring abiotic stresses (salt, drought, and metal/metalloid toxicity) tolerance. The role of PAs in enhancing antioxidant defense mechanism and subsequent oxidative stress tolerance in plants is well-evident. However, the enzymatic regulation in PAs biosynthesis and metabolism is still under research and widely variable under various stresses and plant types. Recently, exogenous use of PAs, such as putrescine, spermidine, and spermine, was found to play a vital role in enhancing stress tolerance traits in plants. Polyamines also interact with other molecules like phytohormones, nitric oxides, trace elements, and other signaling molecules to providing coordinating actions towards stress tolerance. Due to the rapid industrialization metal/metalloid(s) contamination in the soil and subsequent uptake and toxicity in plants causes the most significant yield loss in cultivated plants, which also hamper food security. Finding the ways in enhancing tolerance and remediation mechanism is one of the critical tasks for plant biologists. In this review, we will focus the recent update on the roles of PAs in conferring metal/metalloid(s) tolerance in plants.


Subject(s)
Metalloids/toxicity , Metals/toxicity , Plants/metabolism , Polyamines/metabolism , Stress, Physiological , Environmental Pollution , Gene Expression Regulation, Plant , Metalloids/pharmacokinetics , Metals/pharmacokinetics , Plants/drug effects , Plants/genetics
13.
Physiol Mol Biol Plants ; 25(2): 443-455, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30956427

ABSTRACT

Physiological and biochemical changes in six-day-old hydroponically grown lentil seedlings exposed to 100 mM salinity stress with or without 5 and 10 mM Na-acetate were studied. Results showed that salt stress reduced recovery percentage, fresh weight (FW), chlorophyll (chl) content, disturbed water balance, disrupted antioxidant defense pathway by decreasing reduced ascorbate content, and caused ion toxicity resulting from increased Na+ accumulation, severe K+ loss from roots in hydroponic culture. However, exogenous application of Na-acetate improved the seedling growth by maintaining water balance and increasing chl content. Furthermore, Na-acetate application reduced oxidative damage by modulating antioxidant defense pathway, and sustained ion homeostasis by reducing Na+ uptake and K+ loss. In the second experiment in glass house, we investigated the role of Na-acetate on lentil for long-term salinity. Acetate application increased FW and dry weight, reduced oxidative and membrane damage, and lowered the accumulation of Na+ in shoot compared with salt stressed seedlings alone. From the results of both experiments, it is clear that the exogenous application of Na-acetate enhanced salt tolerance in lentil seedlings.

14.
Ecotoxicology ; 28(3): 261-276, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30761430

ABSTRACT

Nickel (Ni), an essential nutrient of plant but very toxic to plant at supra-optimal concentration that causes inhibition of seed germination emergence and growth of plants as a consequence of physiological disorders. Hence, the present study investigates the possible mechanisms of Ni tolerance in rice seedlings by exogenous application of silicon (Si). Thirteen-day-old hydroponically grown rice (Oryza sativa L. cv. BRRI dhan54) were treated with Ni (NiSO4.7H2O, 0.25 and 0.5 mM) sole or in combination with 0.50 mM Na2SiO3 for a period of 3 days to investigate the effect of Si supply for revoking the Ni stress. Nickel toxicity gave rise to reactive oxygen species (ROS) and cytotoxic methylglyoxal (MG), accordingly, initiated oxidative stress in rice leaves, and accelerated peroxidation of lipids and consequent damage to membranes. Reduced growth, biomass accumulation, chlorophyll (chl) content, and water balance under Ni-stress were also found. However, free proline (Pro) content increased in Ni-exposed plants. In contrast, the Ni-stressed seedlings fed with supplemental Si reclaimed the seedlings from chlorosis, water retrenchment, growth inhibition, and oxidative stress. Silicon up-regulated most of the antioxidant defense components as well as glyoxalase systems, which helped to improve ROS scavenging and MG detoxification. Hence, these results suggest that the exogenous Si application can improve rice seedlings' tolerance to Ni-toxicity.


Subject(s)
Antioxidants/metabolism , Nickel/pharmacology , Oryza/drug effects , Pyruvaldehyde/metabolism , Seedlings/drug effects , Silicon/pharmacology , Lipid Peroxidation/drug effects , Nickel/metabolism , Oryza/physiology , Oxidative Stress , Plant Leaves/drug effects , Plant Roots/drug effects , Reactive Oxygen Species/metabolism , Stress, Physiological
15.
Plants (Basel) ; 8(1)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30669317

ABSTRACT

Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition.

16.
Ecotoxicol Environ Saf ; 147: 990-1001, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29976011

ABSTRACT

Cadmium (Cd) is a serious environmental threat because it accumulates in plants from soil and is subsequently transported into the food cycle. Increased Cd uptake in plants disrupts plant metabolism and hampers crop growth and development. Therefore, remediation of Cd from soil and enhancing plant tolerance to metal toxicity is vital. In the present study, we investigated the function of different doses of citric acid (CA) on Cd toxicity in terms of metal accumulation and stress tolerance in mustard (Brassica juncea L.). Brassica juncea seedlings (12-day-old) were treated with Cd (0.5mMCd and 1.0mM CdCl2) alone and in combination with CA (0.5mM and 1.0mM) in a semi-hydroponic medium for three days. Cadmium accumulation in the roots and shoots of the mustard seedlings increased in a dose-dependent manner and was higher in the roots. Increasing the Cd concentration led to reduced growth, biomass, water status, and chlorophyll (chl) content resulting from increased oxidative damage (elevated malondialdehyde, MDA content; hydrogen peroxide, H2O2 level; superoxide, O2•- generation; lipoxygenase, LOX activity; and methylglyoxal, MG content) and downregulating of the major enzymes of the antioxidant defense and glyoxalase systems. Under Cd stress, both doses of CA improved the growth of the plants by enhancing leaf relative water content (RWC) and chl content; reducing oxidative damage; enhancing the pool of ascorbate (AsA) and glutathione (GSH) and the activities of the antioxidant enzymes (ascorbate peroxidase, APX; monodehydroascorbate reductase, MDHAR; dehydroascorbate reductase, DHAR; glutathione reductase, GR; glutathione peroxidase, GPX; superoxide dismutase, SOD; catalase, CAT); improving the performance of the glyoxalase system (glyoxalase I, Gly I and glyoxalase II, Gly II activity); and increasing the phytochelatin (PC) content. Exogenous CA also increased the root and shoot Cd content and Cd translocation from the roots to the shoots in a dose-dependent manner. Our findings suggest that CA plays a dual role in mustard seedlings by increasing phytoremediation and enhancing stress tolerance through upregulating the antioxidant defense and glyoxalase systems.


Subject(s)
Antioxidants/metabolism , Cadmium/metabolism , Lactoylglutathione Lyase/metabolism , Mustard Plant/metabolism , Ascorbate Peroxidases/metabolism , Ascorbic Acid/metabolism , Biodegradation, Environmental , Cadmium/toxicity , Catalase/metabolism , Citric Acid/metabolism , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Glutathione Reductase/metabolism , Hydrogen Peroxide/metabolism , Malondialdehyde/metabolism , Mustard Plant/drug effects , Oxidation-Reduction/drug effects , Oxidoreductases , Phytochelatins/metabolism , Pyruvaldehyde/metabolism , Seedlings/drug effects , Seedlings/metabolism , Superoxide Dismutase/metabolism , Thiolester Hydrolases/metabolism
17.
Plant Physiol Biochem ; 126: 173-186, 2018 May.
Article in English | MEDLINE | ID: mdl-29525441

ABSTRACT

To investigate the physiological and biochemical mechanisms of nitric oxide (NO)-induced paraquat (PQ) tolerance in plants, we pretreated a set of 10-day-old Brassica napus seedlings with 500 µM sodium nitroprusside (SNP - a NO donor) for 24 h. Then, three doses of PQ (62.5, 125 and 250 µM) were applied separately, as well as to SNP-pretreated seedlings, and the seedlings were allowed to grow for an additional 48 h. The seedlings treated with PQ showed clear, dose-dependent signs of oxidative stress, with elevated levels of lipid peroxidation (MDA, malondialdehyde), H2O2 and O2- generation, and lipoxygenase (LOX) activity. Paraquat treatment disrupted pools of water-soluble antioxidants (ascorbate-AsA and reduced glutathione-GSH). Paraquat had different effects on the activities of antioxidant enzymes. The activities of glutathione reductase (GR) and catalase (CAT) decreased after PQ treatment in a dose-dependent manner, while the activities of ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and glyoxalase (Gly I and Gly II) decreased only with high doses of PQ (125 and 250 µM). By contrast, the activities of monodehydroascorbate reductase (MDHAR), glutathione S-transferase (GST) and glutathione peroxidase (GPX) increased after PQ treatment. A higher dose of PQ reduced chlorophyll and leaf water content but increased the methylglyoxal (MG) and proline (Pro) content. Compared to PQ alone, PQ supplemented with exogenous NO reduced LOX activity, the AsA-GSH pool, and the activities of APX, DHAR, GR, GPX, Gly I and Gly II. These effects helped to reduce oxidative stress and MG toxicity and were accompanied by reduced chlorosis and increased relative water content. Given these results, exogenous NO was found to be a key player in the mitigation of PQ toxicity in plants.


Subject(s)
Antioxidants/metabolism , Brassica napus/metabolism , Carbon-Sulfur Lyases/biosynthesis , Nitric Oxide/pharmacology , Oxidoreductases/biosynthesis , Paraquat/toxicity , Plant Proteins/biosynthesis , Seedlings/metabolism , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...