Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Article in English | MEDLINE | ID: mdl-39005660

ABSTRACT

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

2.
Int Immunopharmacol ; 116: 109739, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36706590

ABSTRACT

Dendritic cells (DCs) play pivotal roles in immune responses. The differentiation and function of DCs are regulated by environmental metabolites. Putrescine is ubiquitous in various metabolic microenvironments and its immunoregulation has been of increasing interest. However, the mechanisms associated with its DC-induced immunoregulation remain unclear. In this study, we found putrescine promoted induction of immature bone marrow derived DCs (BMDCs), along with the increased phagocytosis and migration, and altered cytokine secretion in immature BMDCs. Transcriptomic profiles indicated significantly impaired inflammatory-related pathways, elevated oxidative phosphorylation, and decreased p-STAT3 (Tyr705) expression. Additionally, putrescine performed minor influence on the lipopolysaccharide (LPS)-induced maturation of BMDCs but significantly impaired LPS-induced DC-elicited allogeneic T-cell proliferation as well as the cytokine secretion. Furthermore, molecular docking and dynamics on the conjugation between putrescine and STAT3 revealed that putrescine could be stably bound to the hydrophilic cavity in STAT3 and performed significant influence on the Tyr705 phosphorylation. CUT&Tag analysis uncovered altered motifs, downregulated IFN-γ response, and upregulated p53 pathway in Putrescine group compared with Control group. In summary, our results demonstrated for the first time that putrescine might accelerate the differentiation of BMDCs by inhibiting the phosphorylation of STAT3 at Tyr705. Given that both DCs and putrescine have ubiquitous and distinct roles in various immune responses and pathogeneses, our findings may provide more insights into polyamine immunoregulation on DCs, as well as distinct strategies in the clinical utilization of DCs by targeting polyamines.


Subject(s)
Lipopolysaccharides , Putrescine , Phosphorylation , Putrescine/pharmacology , Putrescine/metabolism , Lipopolysaccharides/metabolism , Bone Marrow , Molecular Docking Simulation , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Dendritic Cells , Bone Marrow Cells/metabolism
3.
Front Oncol ; 12: 1004726, 2022.
Article in English | MEDLINE | ID: mdl-36324577

ABSTRACT

Histone modification and the inflammation-carcinoma sequence (ICS) have been acknowledgedly implicated in gastric carcinogenesis. However, the extremum expression of some histone modification genes (HMGs) in intestinal metaplasia (IM) rather than GC obscures the roles of HMGs in ICS. In this study, we assumed an explanation that the roles of HMGs in ICS were stage specific. Bulk RNA-seq on endoscopy biopsy samples from a total of 50 patients was accompanied by reanalysis of a set of published single-cell transcriptomes, which cross-sectionally profiled the transcriptomic features of chronic superficial gastritis (SG), atrophy gastritis (AG), IM, and early gastric cancer (GC). Differential analysis observed significantly peaked expression of SIRT6 and SIRT7 at IM. Weighted correlation network analysis on bulk transcriptome recognized significant correlations between SIRT1/6 and IM. The single-cell atlas identified one subgroup of B cells expressing high level of TFF1 (TFF1 hi naive B cell) that theoretically played important roles in defending microbial infection, while SIRT6 displayed a positive correlation with TFF1 low naive B cells. Moreover, gene set enrichment analysis at different lesions (SG-AG, AG-IM, and IM-GC) highlighted that gene sets contributing to IM, e.g., Brush Border, were largely enriched from co-expressing genes of Sirtuins (SIRTs) in AG-IM. Surveys of the genes negatively correlated with SIRT6 in public databases considered SIRT6 as tumor suppressors, which was confirmed by the cell proliferation and migration assays after transient transfection of SIRT6 overexpression vector into AGS cells. All the above observations were then confirmed by serial section-based immunohistochemistry against Ki-67, MUC2, MUC5AC, p53, and SIRT6 on the endoscopic submucosal dissection tissue. By contrast, the expression of the other HMGs varied even opposite within same family. Taken together, this study preliminarily demonstrated the two-edged sword role of SIRTs in ICS and, by extension, showed that the roles of HMGs in ICS were probably stage specific. Our study may provide new insights into and attract attention on gastric prevention and therapy targeting HMGs.

SELECTION OF CITATIONS
SEARCH DETAIL
...