Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38517726

ABSTRACT

Semantic segmentation of 3D point clouds is important for many applications, such as autonomous driving. To train semantic segmentation models, labeled point cloud segmentation datasets are essential. Meanwhile, point cloud labeling is time-consuming for annotators, which typically involves tuning the camera viewpoint and selecting points with a lasso tool. To reduce the time cost of point cloud labeling, we propose a viewpoint recommendation approach to reduce annotators' labeling time costs. We adapt Fitts' law to model the time cost of lasso selection in point clouds. Using the modeled time cost, the viewpoint that minimizes the lasso selection time cost is recommended to the annotator. We build a data labeling system for semantic segmentation of 3D point clouds that integrates our viewpoint recommendation approach. The system enables users to navigate to recommended viewpoints for efficient annotation. Through a user study, we observed that our approach effectively reduced the data labeling time cost. We also qualitatively compare our approach with previous viewpoint selection approaches on different datasets.

2.
Article in English | MEDLINE | ID: mdl-38127599

ABSTRACT

Traditional deep learning algorithms assume that all data is available during training, which presents challenges when handling large-scale time-varying data. To address this issue, we propose a data reduction pipeline called knowledge distillation-based implicit neural representation (KD-INR) for compressing large-scale time-varying data. The approach consists of two stages: spatial compression and model aggregation. In the first stage, each time step is compressed using an implicit neural representation with bottleneck layers and features of interest preservation-based sampling. In the second stage, we utilize an offline knowledge distillation algorithm to extract knowledge from the trained models and aggregate it into a single model. We evaluated our approach on a variety of time-varying volumetric data sets. Both quantitative and qualitative results, such as PSNR, LPIPS, and rendered images, demonstrate that KD-INR surpasses the state-of-the-art approaches, including learning-based (i.e., CoordNet, NeurComp, and SIREN) and lossy compression (i.e., SZ3, ZFP, and TTHRESH) methods, at various compression ratios ranging from hundreds to ten thousand.

SELECTION OF CITATIONS
SEARCH DETAIL
...