Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32191887

ABSTRACT

Obtained by wide band radar system, high resolution range profile (HRRP) is the projection of scatterers of target to the radar line-of-sight (LOS). HRRP reconstruction is unavoidable for inverse synthetic aperture radar (ISAR) imaging, and of particular usage for target recognition, especially in cases that the ISAR image of target is not able to be achieved. For the high-speed moving target, however, its HRRP is stretched by the high order phase error. To obtain well-focused HRRP, the phase error induced by target velocity should be compensated, utilizing either measured or estimated target velocity. Noting in case of under-sampled data, the traditional velocity estimation and HRRP reconstruction algorithms become invalid, a novel HRRP reconstruction of high-speed target for under-sampled data is proposed. The Laplacian scale mixture (LSM) is used as the sparse prior of HRRP, and the variational Bayesian inference is utilized to derive its posterior, so as to reconstruct it with high resolution from the under-sampled data. Additionally, during the reconstruction of HRRP, the target velocity is estimated via joint constraint of entropy minimization and sparseness of HRRP to compensate the high order phase error brought by the target velocity to concentrate HRRP. Experimental results based on both simulated and measured data validate the effectiveness of the proposed Bayesian HRRP reconstruction algorithm.

2.
Sensors (Basel) ; 18(9)2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30149553

ABSTRACT

In the paper, the estimation of joint direction-of-departure (DOD) and direction-of-arrival (DOA) for strictly noncircular targets in multiple-input multiple-output (MIMO) radar with unknown mutual coupling is considered, and a tensor-based angle estimation method is proposed. In the proposed method, making use of the banded symmetric Toeplitz structure of the mutual coupling matrix, the influence of the unknown mutual coupling is removed in the tensor domain. Then, a special enhancement tensor is formulated to capture both the noncircularity and inherent multidimensional structure of strictly noncircular signals. After that, the higher-order singular value decomposition (HOSVD) technology is applied for estimating the tensor-based signal subspace. Finally, the direction-of-departure (DOD) and direction-of-arrival (DOA) estimation is obtained by utilizing the rotational invariance technique. Due to the use of both noncircularity and multidimensional structure of the detected signal, the algorithm in this paper has better angle estimation performance than other subspace-based algorithms. The experiment results verify that the method proposed has better angle estimation performance.

3.
Sensors (Basel) ; 18(3)2018 Mar 09.
Article in English | MEDLINE | ID: mdl-29522499

ABSTRACT

This paper deals with joint estimation of direction-of-departure (DOD) and direction-of- arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radar with the coexistence of unknown mutual coupling and spatial colored noise by developing a novel robust covariance tensor-based angle estimation method. In the proposed method, a third-order tensor is firstly formulated for capturing the multidimensional nature of the received data. Then taking advantage of the temporal uncorrelated characteristic of colored noise and the banded complex symmetric Toeplitz structure of the mutual coupling matrices, a novel fourth-order covariance tensor is constructed for eliminating the influence of both spatial colored noise and mutual coupling. After a robust signal subspace estimation is obtained by using the higher-order singular value decomposition (HOSVD) technique, the rotational invariance technique is applied to achieve the DODs and DOAs. Compared with the existing HOSVD-based subspace methods, the proposed method can provide superior angle estimation performance and automatically jointly perform the DODs and DOAs. Results from numerical experiments are presented to verify the effectiveness of the proposed method.

4.
Sensors (Basel) ; 17(4)2017 Apr 24.
Article in English | MEDLINE | ID: mdl-28441770

ABSTRACT

In this paper, we consider the direction of arrival (DOA) estimation issue of noncircular (NC) source in multiple-input multiple-output (MIMO) radar and propose a novel unitary nuclear norm minimization (UNNM) algorithm. In the proposed method, the noncircular properties of signals are used to double the virtual array aperture, and the real-valued data are obtained by utilizing unitary transformation. Then a real-valued block sparse model is established based on a novel over-complete dictionary, and a UNNM algorithm is formulated for recovering the block-sparse matrix. In addition, the real-valued NC-MUSIC spectrum is used to design a weight matrix for reweighting the nuclear norm minimization to achieve the enhanced sparsity of solutions. Finally, the DOA is estimated by searching the non-zero blocks of the recovered matrix. Because of using the noncircular properties of signals to extend the virtual array aperture and an additional real structure to suppress the noise, the proposed method provides better performance compared with the conventional sparse recovery based algorithms. Furthermore, the proposed method can handle the case of underdetermined DOA estimation. Simulation results show the effectiveness and advantages of the proposed method.

5.
Sensors (Basel) ; 16(5)2016 04 28.
Article in English | MEDLINE | ID: mdl-27136551

ABSTRACT

This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

SELECTION OF CITATIONS
SEARCH DETAIL
...