Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 270: 27-34, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24525161

ABSTRACT

The polydopamine polymer decorated with magnetic nanoparticles (Fe3O4/PDA) was synthesized and applied for removal of multiple pollutants. The resulted Fe3O4/PDA was characterized with elemental analysis, thermo-gravimetric analyses, vibrating sample magnetometer, high resolution transmission electron microscope, Fourier transform infrared spectra, and X-ray photoelectron spectroscopy. The self-polymerization of dopamine could be completed within 8h, and Fe3O4 nanoparticles were embedded into PDA polymer. Superparamagnetism and large saturation magnetization facilitated collection of sorbents with a magnet. Based on the catechol and amine groups, the PDA polymer provided multiple interactions to combine with pollutants. To investigate the adsorption ability of Fe3O4/PDA, heavy metal ions and dyes were selected as target pollutants. The adsorption of pollutants was pH dependent due to the variation of surface charges at different solution pH. The removal efficiencies of cation pollutants enhanced with solution pH increasing, and that of anion pollutant was just the opposite. Under the optimal solution pH, the maximum adsorption capacity calculated from Langmuir adsorption isotherm for methylene blue, tartrazine, Cu(2+), Ag(+), and Hg(2+) were 204.1, 100.0, 112.9, 259.1, and 467.3 mg g(-1), respectively. The Fe3O4/PDA shows great potential for multiple pollutants removal, and this study is the first application of PDA polymer in environmental remediation.


Subject(s)
Indoles/chemistry , Magnetite Nanoparticles/chemistry , Polymers/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Animals , Biopolymers/chemistry , Bivalvia , Coloring Agents/chemistry , Copper/chemistry , Mercury/chemistry , Methylene Blue/chemistry , Silver/chemistry , Tartrazine/chemistry , Water Purification/methods
2.
Virol J ; 7: 126, 2010 Jun 13.
Article in English | MEDLINE | ID: mdl-20540804

ABSTRACT

BACKGROUND: Bluetongue virus (BTV) is an icosahedral non-enveloped virus within the genus Orbivirus of Reoviridae and exists as 24 distinct serotypes. BTV can infect all ruminant species and causes severe sickness in sheep. Recently, it was reported that BTV can infect some human cancer cells selectively. Because of the important oncolysis of this virus, we developed a novel purifying method for large-scale production. The purifying logic is simple, which is picking out all the components unwanted and the left is what we want. The process can be summarized in 4 steps: centrifugation, pulling down cell debrises and soluble proteins by co-immunoprecipitation with agarose Protein A, dialysis and filtration sterilization after concentration. RESULTS: The result of transmission electron microscope (TEM) observation showed that the sample of purified virus has a very clear background and the virions still kept intact. The result of 50% tissue culture infective dose (TCID(50)) assay showed that the bioactivity of purified virus is relatively high. CONCLUSIONS: This method can purify BTV-10 with high quality and high biological activity on large-scale production. It also can be used for purifying other BTV serotypes.


Subject(s)
Bluetongue virus/isolation & purification , Bluetongue/virology , Immunoprecipitation/methods , Staphylococcal Protein A/chemistry , Virology/methods , Animals , Bluetongue virus/physiology , Bluetongue virus/ultrastructure , Chlorocebus aethiops , Protein Binding , Sepharose/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...