Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Sci ; 23(1): 88-93, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25409919

ABSTRACT

The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests has been heavily dependent upon chemical acaricides. Objectives of this study were to determine the resistance status of these two pest species to commonly used acaricides on strawberries in a year-round intensive horticultural production region. LC90 of abamectin for adult carmine spider mites was 4% whereas that for adult twospotted spider mites was 24% of the top label rate. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 0.5%, 0.5%, 1.4% and 83% of their respective highest label rates for carmine spider mite eggs, 0.7%, 2.7%, 12.1% and 347% of their respective highest label rates for the nymphs. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 4.6%, 11.1%, 310% and 62% of their respective highest label rates for twospotted spider mite eggs, 3%, 13%, 432,214% and 15% of their respective highest label rates for the nymphs. Our results suggest that T. cinnabarinus have developed resistance to bifenazate and that the T. urticae have developed resistance to hexythiazox. These results strongly emphasize the need to develop resistance management strategies in the region.


Subject(s)
Acaricides/pharmacology , Drug Resistance/drug effects , Fragaria , Tetranychidae/drug effects , Animals , Tetranychidae/physiology
2.
J Chem Ecol ; 35(3): 320-5, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19224277

ABSTRACT

Secondary metabolites play an important role in host plant resistance to insects, and insects, in turn, may develop mechanisms to counter plant resistance mechanisms. In this study, we investigated the toxicity of gramine to the cereal aphid Sitobion avenae and some enzymatic responses of S. avenae to this alkaloid. When S. avenae fed on an artificial diet containing gramine, mortality occurred in a dose-dependent manner. The LC(50) of gramine was determined to be 1.248 mM. In response to gramine, S. avenae developed increased activities of carboxylesterase and glutathione S-transferase, two important detoxification enzymes. The activities of both enzymes were positively correlated with the concentration of dietary gramine. In addition, the activities of peroxidase and polypheolic oxidase, two important oxidoreductase enzymes in S. avenae, increased in response to gramine; however, catalase activity decreased when insects were exposed to higher levels of dietary gramine. The potential role of gramine in host plant resistance and S. avenae counter-resistance is discussed.


Subject(s)
Alkaloids/toxicity , Aphids/enzymology , Alkaloids/chemistry , Alkaloids/pharmacokinetics , Animals , Carboxylesterase/metabolism , Catalase/metabolism , Glutathione Transferase/metabolism , Inactivation, Metabolic , Indole Alkaloids , Inhibitory Concentration 50 , Oxidoreductases/metabolism
3.
J Chem Ecol ; 35(2): 176-82, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19159980

ABSTRACT

Phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO), and peroxidase (POD) are considered important biochemical markers in host plant resistance against pest insects. Constitutive activity of these enzymes was analyzed in resistant and susceptible wheat cultivars against cereal aphid Sitobion avenae (F.) at various developmental stages, i.e., tillering, stem elongation, flag leaf, and ear. Following aphid infestation, the activity of these enzymes was determined at the flag leaf and ear stages. Resistant cultivars exhibited greater constitutive PAL activity than susceptible ones at the tillering, stem elongation, and flag leaf stages. Aphid infestation enhanced levels of PAL activity in the flag leaf and ear stages in both resistant and susceptible cultivars. Constitutive PPO activity was higher in the resistant cultivars at all developmental stages. Aphid infestation induced increases in PPO activity in the flag leaf and ear stages of one susceptible cultivar, whereas induction in resistant cultivars was weaker. Resistant cultivars showed greater constitutive POD activity in the tillering, stem elongation, and flag leaf stages, while aphid infestation induced POD activity in all cultivars, especially in susceptible ones. The potential role of PAL, PPO, and POD in wheat defense against aphid infestation is discussed.


Subject(s)
Aphids/physiology , Plant Proteins/metabolism , Triticum/enzymology , Animals , Catechol Oxidase/metabolism , Peroxidase/metabolism , Pest Control, Biological , Phenylalanine Ammonia-Lyase/metabolism , Triticum/growth & development , Triticum/metabolism
4.
J Econ Entomol ; 98(1): 182-7, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15765681

ABSTRACT

A competitive enzyme-linked immunosorbent assay (ELISA) technique was evaluated for quantifying titers of imidacloprid in xylem fluid extracted from Vitis vinifera L. grapevines that were treated with systemic applications of the neonicotinoid insecticide Admire. Evidence of matrix effects, factors that compromise the precision and accuracy of the ELISA, was present in assays with undiluted xylem fluid. These effects could be eliminated by dilution of extracts in water, resulting in a lower sensitivity of the assay of 4 microg liter(-1). In a field trial conducted in a commercial vineyard, there was an excellent correlation between Admire application rates and xylem fluid concentrations of imidacloprid. At an Admire application rate of 1.17 liter ha(-1) (16 fl oz per acre), uptake of imidacloprid into vines was rapid. Imidacloprid was consistently detected in the xylem for up to 3 mo after application at concentrations known to be effective at managing populations of the sharpshooter Homalodisca coagulata Say, an important vector of Xylella fastidiosa Wells in California vineyards. The ELISA is a sensitive technique that can be used to study the behavior of systemic insecticides within crop systems and their impact on pest populations.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Fruit/chemistry , Imidazoles/analysis , Insecticides/analysis , Plant Extracts/chemistry , Vitis/chemistry , Neonicotinoids , Nitro Compounds , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...