Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 44(27): 4147-4156, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35634972

ABSTRACT

The effect of Fe(II) concentrations on schwertmannite bio-synthesis and the As(III) removal capacity of schwertmannite were investigated in this study. Acidithiobalillus ferrooxidans (A. ferrooxidans) were inoculated into five FeSO4 systems with initial concentrations of 50, 100, 200, 300, and 400 mmol/L, respectively, to bio-synthesize schwertmannite. The Fe(II) of the systems were almost completely oxidised at 48, 72, 120, 168, and 192 h, respectively, and the bio-schwertmannite yield was 1.99, 3.81, 9.36, 12.42, and 21.60 g/L. The results of this study indicate that all minerals harvested from the different systems are schwertmannite. As the initial Fe(II) concentration increases, the effect of the minerals removing As(III) decreases; moreover, the structure and extracellular polymeric substance (EPS) of schwertmannite may regulate the As(III) removal process. The EPS generated by the A. ferrooxidans can absorb As(III). The outcomes of this study provide fresh insights into the bio-synthetic regulation of schwertmannite and play a significant role in treating As-containing groundwater.


Subject(s)
Acidithiobacillus , Iron Compounds , Extracellular Polymeric Substance Matrix , Oxidation-Reduction , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Minerals , Ferrous Compounds/chemistry
2.
Environ Technol ; 43(24): 3706-3718, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34018903

ABSTRACT

The effect of pH regulation on schwertmannite bio-synthesis and its As removal ability were investigated in this study. The total Fe precipitation efficiency in a conventional schwertmannite bio-synthesis system (CK) reached 26.5%, with a mineral weight of 5.21 g/L and a mineral specific surface area of 3.18 m2/g. The total Fe precipitation efficiency increased to 88.4-95.8%, the mineral weight increased to 17.10-18.62 g/L, and the specific surface area increased to 3.61-90.67 m2/g of five different treatments in which the system pH was continually adjusted to 2.50, 2.70, 2.90, 3.10, and 3.30 every 3 h, respectively. The very small amounts of schwertmannite were transformed to goethite when the system pH was periodically adjusted to 2.90, 3.10 and 3.30. The increased specific surface area of bio-schwertmannite was due to the contribution of mesopores, with most pores having a diameter of 2-20 nm. For actual As-containing groundwater (27.4 µg/L), the As removal rate was 52.9% for bio-schwertmannite collected from the CK system. However, the removal rate of As increased to 92.7-97.8% for minerals which were collected after five adjusted pH treatments. The outcomes of this study provide a fresh insight into the bio-synthesis regulation of schwertmannite, and have great significance for the treatment of As-containing groundwater.


Subject(s)
Arsenic , Iron Compounds , Acidithiobacillus , Hydrogen-Ion Concentration , Minerals , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...