Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38534017

ABSTRACT

Dirac materials offer exciting opportunities to explore low-energy carrier dynamics and novel physical phenomena, especially their interaction with magnetism. In this context, this work focuses on studies of pressure control on the magnetic state of EuMnBi2, a representative magnetic Dirac semimetal, through time-domain synchrotron Mössbauer spectroscopy in151Eu. Contrary to the previous report that the antiferromagnetic order is suppressed by pressure above 4 GPa, we have observed robust magnetic order up to 33.1 GPa. Synchrotron-based x-ray diffraction experiment on a pure EuMnBi2sample shows that the tetragonal crystal lattice remains stable up to at least 31.7 GPa.

2.
Proc Natl Acad Sci U S A ; 120(52): e2310779120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38113259

ABSTRACT

We present a comprehensive study of the inhomogeneous mixed-valence compound, EuPd3S4, by electrical transport, X-ray diffraction, time-domain 151Eu synchrotron Mössbauer spectroscopy, and X-ray absorption spectroscopy measurements under high pressure. Electrical transport measurements show that the antiferromagnetic ordering temperature, TN, increases rapidly from 2.8 K at ambient pressure to 23.5 K at ~19 GPa and plateaus between ~19 and ~29 GPa after which no anomaly associated with TN is detected. A pressure-induced first-order structural transition from cubic to tetragonal is observed, with a rather broad coexistence region (~20 GPa to ~30 GPa) that corresponds to the TN plateau. Mössbauer spectroscopy measurements show a clear valence transition from approximately 50:50 Eu2+:Eu3+ to fully Eu3+ at ~28 GPa, consistent with the vanishing of the magnetic order at the same pressure. X-ray absorption data show a transition to a fully trivalent state at a similar pressure. Our results show that pressure first greatly enhances TN, most likely via enhanced hybridization between the Eu 4f states and the conduction band, and then, second, causes a structural phase transition that coincides with the conversion of the europium to a fully trivalent state.

3.
Nature ; 611(7934): 88-92, 2022 11.
Article in English | MEDLINE | ID: mdl-36261527

ABSTRACT

Accurate knowledge of the mineralogy is essential for understanding the lower mantle, which represents more than half of Earth's volume. CaSiO3 perovskite is believed to be the third-most-abundant mineral throughout the lower mantle, following bridgmanite and ferropericlase1-3. Here we experimentally show that the calcium solubility in bridgmanite increases steeply at about 2,300 kelvin and above 40 gigapascals to a level sufficient for a complete dissolution of all CaSiO3 component in pyrolite into bridgmanite, resulting in the disappearance of CaSiO3 perovskite at depths greater than about 1,800 kilometres along the geotherm4,5. Hence we propose a change from a two-perovskite domain (TPD; bridgmanite plus CaSiO3 perovskite) at the shallower lower mantle to a single-perovskite domain (SPD; calcium-rich bridgmanite) at the deeper lower mantle. Iron seems to have a key role in increasing the calcium solubility in bridgmanite. The temperature-driven nature can cause large lateral variations in the depth of the TPD-to-SPD change in response to temperature variations (by more than 500 kilometres). Furthermore, the SPD should have been thicker in the past when the mantle was warmer. Our finding requires revision of the deep-mantle mineralogy models and will have an impact on our understanding of the composition, structure, dynamics and evolution of the region.

4.
J Phys Condens Matter ; 34(41)2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35896102

ABSTRACT

Eu(Fe0.75Ru0.25)2As2is an intriguing system with unusual coexistence of superconductivity and ferromagnetism, providing a unique platform to study the nature of such coexistence. To establish a magnetic phase diagram, time-domain synchrotron Mössbauer experiments in151Eu have been performed on a single crystalline Eu(Fe0.75Ru0.25)2As2sample under hydrostatic pressures and at low temperatures. Upon compression the magnetic ordering temperature increases sharply from 20 K at ambient pressure, reaching ∼49 K at 10.1 GPa. With further compression, the magnetic order is suppressed and eventually collapses. Isomer shift values from Mössbauer measurements and x-ray absorption spectroscopy data at EuL3edge show that pressure drives Eu ions to a homogeneous intermediate valence state with mean valence of ∼2.4 at 27.4 GPa, possibly responsible for the suppression of magnetism. Synchrotron powder x-ray diffraction experiment reveals a tetragonal to collapsed-tetragonal structural transition around 5 GPa, a lower transition pressure than in the parent compound. These results provide guidance to further work investigating the interplay of superconductivity and magnetism.

5.
J Chem Phys ; 154(21): 214104, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34240999

ABSTRACT

The 57Fe isomer shift (IS) of pure iron has been measured up to 100 GPa using synchrotron Mössbauer spectroscopy in the time domain. Apart from the expected discontinuity due to the α → ε structural and spin transitions, the IS decreases monotonically with increasing pressure. The absolute shifts were reproduced without semi-empirical calibrations by periodic density functional calculations employing extensive localized basis sets with several common density functionals. However, the best numerical agreement is obtained with the B1WC hybrid functional. Extension of the calculations to 350 GPa, a pressure corresponding to the Earth's inner core, predicted the IS range of 0.00 to -0.85 mm/s, covering the span from Fe(0) to Fe(VI) compounds measured at ambient pressure. The calculations also reproduced the pressure trend from polymorphs of prototypical iron oxide minerals, FeO and Fe2O3. Analysis of the electronic structure shows a strong donation of electrons from oxygen to iron at high pressure. The assignment of formal oxidation to the Fe atom becomes ambiguous under this condition.

6.
Phys Rev Lett ; 125(7): 077202, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32857531

ABSTRACT

We report a pressure-induced phase transition in the frustrated kagomé material jarosite at ∼45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder x-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R3[over ¯]m structure to a structure with a R3[over ¯]c space group. The resulting phase features a rare twisted kagomé lattice in which the integrity of the equilateral Fe^{3+} triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.

7.
Angew Chem Int Ed Engl ; 59(23): 8818-8822, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-32181552

ABSTRACT

Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) using the Mössbauer isotope 161 Dy has been employed for the first time to study the vibrational properties of a single-molecule magnet (SMM) incorporating DyIII , namely [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O ⋅2 EtOH. The experimental partial phonon density of states (pDOS), which includes all vibrational modes involving a displacement of the DyIII ion, was reproduced by means of simulations using density functional theory (DFT), enabling the assignment of all intramolecular vibrational modes. This study proves that 161 Dy NRVS is a powerful experimental tool with significant potential to help to clarify the role of phonons in SMMs.

8.
Nat Commun ; 10(1): 153, 2019 01 11.
Article in English | MEDLINE | ID: mdl-30635572

ABSTRACT

A drastically altered chemistry was recently discovered in the Fe-O-H system under deep Earth conditions, involving the formation of iron superoxide (FeO2Hx with x = 0 to 1), but the puzzling crystal chemistry of this system at high pressures is largely unknown. Here we present evidence that despite the high O/Fe ratio in FeO2Hx, iron remains in the ferrous, spin-paired and non-magnetic state at 60-133 GPa, while the presence of hydrogen has minimal effects on the valence of iron. The reduced iron is accompanied by oxidized oxygen due to oxygen-oxygen interactions. The valence of oxygen is not -2 as in all other major mantle minerals, instead it varies around -1. This result indicates that like iron, oxygen may have multiple valence states in our planet's interior. Our study suggests a possible change in the chemical paradigm of how oxygen, iron, and hydrogen behave under deep Earth conditions.

9.
Angew Chem Int Ed Engl ; 58(11): 3444-3449, 2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30548520

ABSTRACT

Time-domain synchrotron Mössbauer spectroscopy (SMS) based on the Mössbauer effect of 161 Dy has been used to investigate the magnetic properties of a DyIII -based single-molecule magnet (SMM). The magnetic hyperfine field of [Dy(Cy3 PO)2 (H2 O)5 ]Br3 ⋅2 (Cy3 PO)⋅2 H2 O⋅2 EtOH is with B0 =582.3(5) T significantly larger than that of the free-ion DyIII with a 6 H15/2 ground state. This difference is attributed to the influence of the coordinating ligands on the Fermi contact interaction between the s and 4f electrons of the DyIII ion. This study demonstrates that 161 Dy SMS is an effective local probe of the influence of the coordinating ligands on the magnetic structure of Dy-containing compounds.

10.
J Synchrotron Radiat ; 25(Pt 5): 1581-1599, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30179200

ABSTRACT

The synchrotron radiation technique of nuclear resonant inelastic X-ray scattering (NRIXS), also known as nuclear resonance vibrational spectroscopy or nuclear inelastic scattering, provides a wealth of information on the vibrational properties of solids. It has found applications in studies of lattice dynamics and elasticity, superconductivity, heme biochemistry, seismology, isotope geochemistry and many other fields. It involves probing the vibrational modes of solids by using the nuclear resonance of Mössbauer isotopes such as 57Fe, 83Kr, 119Sn, 151Eu and 161Dy. After data reduction, it provides the partial phonon density of states of the Mössbauer isotope that is investigated, as well as many other derived quantities such as the mean force constant of the chemical bonds and the Debye velocity. The data reduction is, however, not straightforward and involves removal of the elastic peak, normalization and Fourier-Log transformation. Furthermore, some of the quantities derived are highly sensitive to details in the baseline correction. A software package and several novel procedures to streamline and hopefully improve the reduction of the NRIXS data generated at sector 3ID of the Advanced Photon Source have been developed. The graphical user interface software is named SciPhon and runs as a Mathematica package. It is easily portable to other platforms and can be easily adapted for reducing data generated at other beamlines. Several tests and comparisons are presented that demonstrate the usefulness of this software, whose results have already been used in several publications. Here, the SciPhon software is used to reduce Kr, Sn, Eu and Dy NRIXS data, and potential implications for interpreting natural isotopic variations in those systems are discussed.

11.
J Am Chem Soc ; 140(38): 12001-12009, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30063832

ABSTRACT

Jarosite, a mineral with a kagomé lattice, displays magnetic frustration yet orders magnetically below 65 K. As magnetic frustration can engender exotic physical properties, understanding the complex magnetism of jarosite comprises a multidecade interdisciplinary challenge. Unraveling the nature of the disparate magnetic coupling interactions that lead to magnetic order in jarosite remains an open question. Specifically, there is no observed trend in the interlayer spacing with magnetic order. Similarly, the relationship between metal-ligand bond distance and magnetic order remains uninvestigated. Here, we use applied pressure to smoothly vary jarosite's structure without manipulating the chemical composition, enabling a chemically invariant structure-function study. Using single-crystal and powder X-ray diffraction, we show that high applied pressures alter both the interlayer spacing and the metal-ligand bond distances. By harnessing a suite of magnetic techniques under pressure, including SQUID-based magnetometry, time-resolved synchrotron Mössbauer spectroscopy, and X-ray magnetic circular dichroism, we construct the magnetic phase diagram for jarosite up to 40 GPa. Notably, we demonstrate that the magnetic ordering temperature increases dramatically to 240 K at the highest pressures. Additionally, we conduct X-ray emission spectroscopy, Mössbauer spectroscopy, and UV-visible absorption spectroscopy experiments to comprehensively map the magnetic and electronic structures of jarosite at high pressure. We use these maps to construct chemically pure magnetostructural correlations which fully explain the nature and role of the disparate magnetic coupling interactions in jarosite.

12.
Nat Commun ; 9(1): 1284, 2018 03 29.
Article in English | MEDLINE | ID: mdl-29599446

ABSTRACT

Heterogeneity in Earth's mantle is a record of chemical and dynamic processes over Earth's history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg0.46Fe3+0.53)(Si0.49Fe3+0.51)O3 Bdg that Fe3+ in the octahedral site undergoes a spin transition between 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.

13.
Langmuir ; 34(2): 622-629, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29262258

ABSTRACT

Superparamagnetic nanoparticles with a high initial magnetic susceptibility χo are of great interest in a wide variety of chemical, biomedical, electronic, and subsurface energy applications. In order to achieve the theoretically predicted increase in χo with the cube of the magnetic diameter, new synthetic techniques are needed to control the crystal structure, particularly for magnetite nanoparticles larger than 10 nm. Aqueous magnetite dispersions (Fe3O4) with a χo of 3.3 (dimensionless SI units) at 1.9 vol %, over 3- to 5-fold greater than those reported previously, were produced in a one-pot synthesis at 210 °C and ambient pressure via thermal decomposition of Fe(II) acetate in triethylene glycol (TEG). The rapid nucleation and focused growth with an unusually high precursor-to-solvent molar ratio of 1:12 led to primary particles with a volume average diameter of 16 nm and low polydispersity according to TEM. The morphology was a mixture of stoichiometric and substoichiometric magnetite according to X-ray diffraction (XRD) and Mössbauer spectroscopy. The increase in χo with the cube of magnetic diameter as well as a saturation magnetization approaching the theoretical limit may be attributed to the highly crystalline structure and very small nonmagnetic layer (∼1 nm) with disordered spin orientation on the surface.

14.
Nat Commun ; 8: 14377, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28216664

ABSTRACT

The +0.1‰ elevated 56Fe/54Fe ratio of terrestrial basalts relative to chondrites was proposed to be a fingerprint of core-mantle segregation. However, the extent of iron isotopic fractionation between molten metal and silicate under high pressure-temperature conditions is poorly known. Here we show that iron forms chemical bonds of similar strengths in basaltic glasses and iron-rich alloys, even at high pressure. From the measured mean force constants of iron bonds, we calculate an equilibrium iron isotope fractionation between silicate and iron under core formation conditions in Earth of ∼0-0.02‰, which is small relative to the +0.1‰ shift of terrestrial basalts. This result is unaffected by small amounts of nickel and candidate core-forming light elements, as the isotopic shifts associated with such alloying are small. This study suggests that the variability in iron isotopic composition in planetary objects cannot be due to core formation.

15.
J Am Chem Soc ; 137(48): 15090-3, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26601790

ABSTRACT

Nickel-iron oxides/hydroxides are among the most active electrocatalysts for the oxygen evolution reaction. In an effort to gain insight into the role of Fe in these catalysts, we have performed operando Mössbauer spectroscopic studies of a 3:1 Ni:Fe layered hydroxide and a hydrous Fe oxide electrocatalyst. The catalysts were prepared by a hydrothermal precipitation method that enabled catalyst growth directly on carbon paper electrodes. Fe(4+) species were detected in the NiFe hydroxide catalyst during steady-state water oxidation, accounting for up to 21% of the total Fe. In contrast, no Fe(4+) was detected in the Fe oxide catalyst. The observed Fe(4+) species are not kinetically competent to serve as the active site in water oxidation; however, their presence has important implications for the role of Fe in NiFe oxide electrocatalysts.

16.
J Synchrotron Radiat ; 22(3): 760-5, 2015 May.
Article in English | MEDLINE | ID: mdl-25931094

ABSTRACT

A new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal-insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe2As2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description of the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu(57)Fe2As2 at high pressure and low temperature were derived by using this new capability.

17.
Proc Natl Acad Sci U S A ; 111(50): 17755-8, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25453077

ABSTRACT

Earth's inner core is known to consist of crystalline iron alloyed with a small amount of nickel and lighter elements, but the shear wave (S wave) travels through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures. The anomalously low S-wave velocity (vS) has been attributed to the presence of liquid, hence questioning the solidity of the inner core. Here we report new experimental data up to core pressures on iron carbide Fe7C3, a candidate component of the inner core, showing that its sound velocities dropped significantly near the end of a pressure-induced spin-pairing transition, which took place gradually between 10 GPa and 53 GPa. Following the transition, the sound velocities increased with density at an exceptionally low rate. Extrapolating the data to the inner core pressure and accounting for the temperature effect, we found that low-spin Fe7C3 can reproduce the observed vS of the inner core, thus eliminating the need to invoke partial melting or a postulated large temperature effect. The model of a carbon-rich inner core may be consistent with existing constraints on the Earth's carbon budget and would imply that as much as two thirds of the planet's carbon is hidden in its center sphere.

18.
Dalton Trans ; 43(36): 13661-71, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-25100199

ABSTRACT

Complexes of the type (NHC)M-Fp (NHC = N-heterocyclic carbene, M = Cu or ZnCl, Fp = FeCp(CO)2) have been used recently as replacements for noble metal C-H functionalization catalysts and for small molecule activation studies. The promising reactivity of these systems has been linked to the use of the late metal electrophiles Cu and Zn in place of early metal electrophiles, and also to the ability of the M-Fe pairs to cooperate during catalytically relevant multielectron redox processes such as bimetallic oxidative addition and bimetallic reductive elimination. Using Mössbauer spectroscopy and metal K-edge XANES analysis, a detailed electronic structure description of these complexes is presented. One unusual feature of the late-metal M-Fp interactions is the presence of significant M → Fe π-backdonation in addition to Fe → M σ-donation; this π-backdonation is absent in early metal analogues and is apparent from analysis of Mössbauer data and Fe K-edge data. Multi-edge XANES analysis of C-I bimetallic oxidative addition at a Cu-Fe reaction center reveals little change in metal effective nuclear charges during the two-electron redox process. IR spectroscopy indicates that the supporting carbonyl ligands participate to a large extent in the redox process.

19.
J Am Chem Soc ; 136(34): 12073-84, 2014 Aug 27.
Article in English | MEDLINE | ID: mdl-25093267

ABSTRACT

Carbometalates are a diverse family of solid state structures formed from transition metal (TM)-carbon polyanionic frameworks whose charges are balanced by rare earth (RE) cations. Remarkable structural features, such as transition metal clusters, are often encountered in these phases, and a pressing challenge is to explain how such features emerge from the competing interaction types (RE-TM, TM-TM, TM-C, etc.) in these systems. In this Article, we describe a joint experimental and theoretical investigation of two compounds, Gd13Fe10C13 and its oxycarbide Gd13Fe10C(13-x)O(x) (x ≈ 1), which add a new dimension to the structural chemistry of carbometalates: π-conjugation through both TM-C and TM-TM multiple bonds. The crystal structures of both compounds are built from layers of Fe-centered Gd prisms stacked along c and surrounded by an Fe-C network, and differ chiefly in the stacking sequence of these layers. The phases' identical local structures have two types of Fe environment: trigonal planar FeC3 sites and H-shaped Fe2C4 sites, with unusually short Fe-Fe and Fe-C bonds. (57)Fe Mössbauer spectroscopy and DFT-calibrated Hückel calculations on Gd13Fe10C13 build a picture of covalent Fe-C σ bonds and conjugated π systems for which Lewis structures can be drawn. Using the reversed approximation Molecular Orbital approach, we can draw isolobal analogies between the Fe centers of this compound and molecular TM complexes: 18-electron configurations could be achieved through σ and π bonds with 18 electrons/Fe for the FeC3 site and 18-n (n = 2 for an Fe═Fe double bond) electrons/Fe for the Fe2C4 site. In this way, the vision of a unified bonding scheme of carbometalates and organometallics proffered by earlier studies is realized in a visual manner, directly from the 1-electron wave functions of the Hückel model. The bonding analysis predicts that Gd13Fe10C13 is one electron/formula unit short of an ideal electron count, explaining the tendency of the system toward a small degree of oxygen substitution. Analogies between the π bonding in Gd13Fe10C13 and that of the allyl anion help rationalize the presence of trigonal planar Fe and linear C units in the structure. The isolobal analogy between Gd13Fe10C13 and an 18-electron coordination complex is expected to apply to carbometalates as a whole, and will be extended to other examples in our future work.

20.
J Ind Microbiol Biotechnol ; 41(7): 1071-83, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24818699

ABSTRACT

A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 µmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-ß-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe(2+) ions, but was inhibited strongly by Fe(3+). The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe(2+) treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe(3+) was first time demonstrated to associate tryptophan fluorescence quenching.


Subject(s)
Cloning, Molecular , Endo-1,4-beta Xylanases/isolation & purification , Endo-1,4-beta Xylanases/metabolism , Metals/pharmacology , Penicillium/enzymology , Amino Acid Sequence , Biotechnology , Endo-1,4-beta Xylanases/genetics , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis/drug effects , Kinetics , Metals/metabolism , Molecular Sequence Data , Molecular Weight , Penicillium/genetics , Substrate Specificity , Temperature , Tryptophan/metabolism , Xylans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...