Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2314190, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885314

ABSTRACT

Ferromagnetic Josephson junctions play a key role in understanding the interplay between superconductivity and ferromagnetism in condensed matter physics. The magnetic domain structures of the ferromagnet in such junctions can significantly affect the tunneling of the superconducting Cooper pairs due to the strong interactions between Cooper pairs and local magnetic moments in the ferromagnetic tunnel barrier. However, the underlying microscopic mechanism of relevant quasiparticle tunneling processes with magnetic domain structures remains largely unexplored. Here, we demonstrate the manipulation of Cooper-pair tunneling in the NbSe2/Cr2Ge2Te6/NbSe2 ferromagnetic Josephson junction by utilizing a multi-domain ferromagnetic barrier with anisotropic magnetic moments. The evolution of up-, down-magnetized domain and Bloch domain structures in Cr2Ge2Te6 barrier under external magnetic fields leads to the enhancement of the critical tunneling supercurrent and an unconventional dual-peak feature with two local maxima in the field-dependent critical current curve. The phenomenon of magnetic-field-modulated critical tunneling supercurrent can be well explained by the competition between the coherence length of tunneling Cooper pairs and the size of magnetic domain walls in Cr2Ge2Te6 barrier. This kind of ferromagnetic Josephson junction provides an intriguing material system for manipulating Cooper-pair tunneling by tuning the local magnetic moments within magnetic Josephson junction devices. This article is protected by copyright. All rights reserved.

2.
ACS Appl Mater Interfaces ; 16(11): 13980-13988, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38446715

ABSTRACT

The anisotropic thermal transport properties of low-symmetry two-dimensional materials play an important role in understanding heat dissipation and optimizing thermal management in integrated devices. Examples of efficient energy dissipation and enhanced power sustainability have been demonstrated in nanodevices based on materials with anisotropic thermal transport properties. However, the exploration of materials with high thermal conductivity and strong in-plane anisotropy remains challenging. Herein, we demonstrate the observation of anisotropic in-plane thermal conductivities of few-layer SiP2 based on the micro-Raman thermometry method. For suspended SiP2 nanoflake, the thermal conductivity parallel to P-P chain direction (κ∥b) can reach 131 W m-1 K-1 and perpendicular to P-P chain direction (κ⊥b) is 89 W m-1 K-1 at room temperature, resulting in a significant anisotropic ratio (κ∥b/κ⊥b) of 1.47. Note that such a large anisotropic ratio mainly results from the higher phonon group velocity along the P-P chain direction. We also found that the thermal conductivity can be effectively modulated by increasing the SiP2 thickness, reaching a value as high as 202 W m-1 K-1 (120 W m-1 K-1) for κ∥b (κ⊥b) at 111 nm thickness, which is the highest among layered anisotropic phosphide materials. Notably, the anisotropic ratio always remains at a high level between 1.47 and 1.68, regardless of the variation of SiP2 thickness. Our observation provides a new platform to verify the fundamental theory of thermal transport and a crucial guidance for designing efficient thermal management schemes of anisotropic electronic devices.

3.
Sci Adv ; 9(36): eadf6758, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37683003

ABSTRACT

Two-dimensional superconductivity is primarily realized in atomically thin layers through extreme exfoliation, epitaxial growth, or interfacial gating. Apart from their technical challenges, these approaches lack sufficient control over the Fermiology of superconducting systems. Here, we offer a Fermiology-engineering approach, allowing us to desirably tune the coherence length of Cooper pairs and the dimensionality of superconducting states in arsenic phosphides AsxP1-x under hydrostatic pressure. We demonstrate how this turns these compounds into tunable two-dimensional superconductors with a dome-shaped phase diagram even in the bulk limit. This peculiar behavior is shown to result from an unconventional valley-dimensionality locking mechanism, driven by a delicate competition between three-dimensional hole-type and two-dimensional electron-type energy pockets spatially separated in momentum space. The resulting dimensionality crossover is further discussed to be systematically controllable by pressure and stoichiometry tuning. Our findings pave a unique way to realize and control superconducting phases with special pairing and dimensional orders.

4.
Nat Nanotechnol ; 18(8): 867-874, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37322146

ABSTRACT

The Berry curvature dipole (BCD) is a key parameter that describes the geometric nature of energy bands in solids. It defines the dipole-like distribution of Berry curvature in the band structure and plays a key role in emergent nonlinear phenomena. The theoretical rationale is that the BCD can be generated at certain symmetry-mismatched van der Waals heterointerfaces even though each material has no BCD in its band structure. However, experimental confirmation of such a BCD induced via breaking of the interfacial symmetry remains elusive. Here we demonstrate a universal strategy for BCD generation and observe BCD-induced gate-tunable spin-polarized photocurrent at WSe2/SiP interfaces. Although the rotational symmetry of each material prohibits the generation of spin photocurrent under normal incidence of light, we surprisingly observe a direction-selective spin photocurrent at the WSe2/SiP heterointerface with a twist angle of 0°, whose amplitude is electrically tunable with the BCD magnitude. Our results highlight a BCD-spin-valley correlation and provide a universal approach for engineering the geometric features of twisted heterointerfaces.

5.
Adv Mater ; 35(19): e2211409, 2023 May.
Article in English | MEDLINE | ID: mdl-36808146

ABSTRACT

Superconducting quantum interferometer device (SQUID) plays a key role in understanding electromagnetic properties and emergent phenomena in quantum materials. The technological appeal of SQUID is that its detection accuracy for the electromagnetic signal can precisely reach the quantum level of a single magnetic flux. However, conventional SQUID techniques normally can only be applied to a bulky sample and do not have the capability to probe the magnetic properties of micro-scale samples with small magnetic signals. Herein, it is demonstrated that, based on a specially designed superconducting nano-hole array, the contactless detection of magnetic properties and quantized vortices in micro-sized superconducting nanoflakes is realized. An anomalous hysteresis loop and a suppression of Little-Parks oscillation are observed in the detected magnetoresistance signal, which originates from the disordered distribution of the pinned vortices in Bi2 Sr2 CaCu2 O8+δ . Therefore, the density of pinning centers of the quantized vortices on such micro-sized superconducting samples can be quantitatively evaluated, which is technically inaccessible for conventional SQUID detection. The superconducting micro-magnetometer provides a new approach to exploring mesoscopic electromagnetic phenomena of quantum materials.

6.
Water Res ; 228(Pt B): 119290, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36434972

ABSTRACT

There is a critical need to use decentralized and/or point-of-use systems to address some challenging water quality issues in society. Sorption-based approaches are uniquely suitable for such applications because of their simplicity in operation; however, the sorbents must possess fast contaminant uptake kinetics to overcome short hydraulic contact times often encountered in small systems. Here we designed a two-sorbent system consisting of Fe2O3-coated mesoporous carbon (FeMC) and nano-Fe2O3-coated activated carbon (FeAC) and demonstrated its ability to remove arsenate with a < 1 min empty bed contact time (EBCT) by a capture-and-storage process. Batch experiments showed rapid capture of arsenate by FeMC, likely occurred on the rod-like structures protruding to the liquid film. The captured arsenate could subsequently be relocated to FeAC for storage, which had a higher apparent sorption capacity. Column studies, operated with a 10 h running time followed by a 14 h pump-off time, showed that with a 102 µg-As/L influent concentration and at 0.85 min EBCT, the column treated 20,022 bed volumes until the 10 µg-As/L breakthrough, corresponding to a sorption density of 2.36 mg-As/g. This capture-and-storage technique resulted in a rapid and high-capacity arsenate removal through a combined effect of facile access to sorption sites on one sorbent and dynamic equilibrium in the two-sorbent system possessing a large total sorption capacity.


Subject(s)
Arsenates , Charcoal , Biological Transport , Kinetics
8.
Small ; 18(37): e2200796, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35961951

ABSTRACT

The core-void@shell architecture shows great advantages in enhancing cycling stability and high-rate performance of Si-based anodes. However, it is usually synthesized by template methods which are complex and environmentally unfriendly and would lead to low-efficiency charge and mass exchange because of the single-point van der Waals contact between the Si core and the shell. Here, a facile and benign one-step method to synthesize multi-Si-void@SiO2 structure, where abundant void spaces exist between multiple Si cores that are multi-point attached to a SiO2 shell through strong chemical bonding, is reported. The corresponding electrode exhibits highly stable cycling stability and excellent electrochemical performance. After 200 cycles at a current density of 0.1 A g-1 and then another 200 cycles at 1.2 A g-1 , the electrode outputs a specific capacity of 1440 mAh g-1 . Even at 2.0 A g-1 , it outputs a specific capacity as high as 1182 mAh g-1 . Such an anode can match almost all the cathode materials presently used in lithium-ion batteries. These results demonstrate the multi-Si-void@SiO2 as a promising anode to be used in future commercial lithium-ion batteries of high energy density and high power density.

9.
Environ Sci Technol ; 56(12): 8932-8941, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35675632

ABSTRACT

Prussian blue analogues are used in electrochemical deionization due to their cation sorption capabilities and ion selectivity properties. Elucidating the fundamental mechanisms underlying intercalation/deintercalation is important for the development of ion-selective electrodes. We examined the thermodynamic and kinetic properties of nickel hexacyanoferrate electrodes by studying different temperatures effects on intercalation/deintercalation with monovalent ions (Li+, Na+, K+, and NH4+) relevant to battery electrode deionization applications. Higher temperatures reduced the interfacial charge transfer resistance and increased the diffusion coefficient of cations in the solid material. Ion transport in the solid material, rather than interfacial charge transfer, was found to be the rate-controlling step, as shown by higher activation energies for ion transport (e.g., 31 ± 3 kJ/mol for K+) than for interfacial charge transfer (5 ± 1 kJ/mol for K+). The largest increase in cation adsorption capacity with temperature was observed for NH4+ (28.1% from 15 to 75 °C) due to its smallest activation energy. These results indicate that ion hydration energy determines the intercalation potential and activation energies of ion transport in solid material control intercalation/deintercalation rate. Together with the endothermic behavior of deintercalation and exothermic behavior of intercalation, the higher operating temperature results in improvement of ion adsorption capacity depending on specific cations.

10.
NanoImpact ; 26: 100390, 2022 04.
Article in English | MEDLINE | ID: mdl-35560290

ABSTRACT

Grouping of substances is a method used to streamline hazard and risk assessment. Assessment of similarity provides the scientific evidence needed for formation of groups. This work reports on justification of grouping of nanoforms (NFs) via similarity of their surface reactivity. Four reactivity assays were used for concentration dependent detection of reactive oxygen species (ROS) generated by NFs: abiotic assays FRAS, EPR and DCFH2-DA, as well as the in vitro assay of NRF2/ARE responsive luciferase reporter activation in the HEK293 cell line. Representative materials (CuO, Mn2O3, BaSO4, CeO2 and ZnO) and three case studies of each several NFs of iron oxides, Diketopyrrolopyrroles (DPP)-based organic pigments and silicas were assessed. A novel similarity assessment algorithm was applied to quantify similarities between pairs of NFs, in a four-step workflow on concentration-response curves, individual concentration and response ranges, and finally the representative materials. We found this algorithm to be applicable to all abiotic and in vitro assays that were tested. Justification of grouping must include the increased potency of smaller particles via the scaling of effects with specific surface, and hence quantitative similarity analysis was performed on concentration-response in mass-metrics. CuO and BaSO4 were the most and least reactive representative materials respectively, and all assays found BaSO4/CuO not similar, as confirmed by their different NOAECs of in vivo studies. However, similarity outcomes from different reactivity assays were not always in agreement, highlighting the need to generate data by one assay for the representative materials and the candidate group of NFs. Despite low similarity scores in vitro some pairs of case study NFs can be accepted as sufficiently similar because the in vivo NOAECs are similar, highlighting the conservative assessment by the abiotic assays.


Subject(s)
Nanostructures , HEK293 Cells , Humans , Reactive Oxygen Species , Risk Assessment/methods , Silicon Dioxide
11.
Adv Mater ; 34(27): e2201209, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35448916

ABSTRACT

The technological appeal of van der Waals ferromagnetic materials is the ability to control magnetism under external fields with desired thickness toward novel spintronic applications. For practically useful devices, ferromagnetism above room temperature or tunable magnetic anisotropy is highly demanded but remains challenging. To date, only a few layered materials exhibit unambiguous ferromagnetic ordering at room temperature via gating techniques or interface engineering. Here, it is demonstrated that the magnetic anisotropy control and dramatic modulation of Curie temperature (Tc ) up to 400 K are realized in layered Fe5 GeTe2 via the high-pressure diamond-anvil-cell technique. Magnetic phases manifesting with in-plane anisotropic, out-of-plane anisotropic and nearly isotropic magnetic states can be tuned in a controllable way, depicted by the phase diagram with a maximum Tc up to 360 K. Remarkably, the Tc can be gradually enhanced to above 400 K owing to the Fermi surface evolution during a pressure loading-deloading process. Such an observation sheds light on the understanding and control of emergent magnetic states in practical spintronic applications.

12.
ACS Appl Mater Interfaces ; 14(5): 7464-7470, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35099944

ABSTRACT

Fabry-Pérot interference plays an important role in modulating the spectral intensity of optical response originating from light-matter interactions. Examples of such interference occurring in the substrate as the resonating cavity have been demonstrated and probed by two-dimensional layered materials. Similarly, the Fabry-Pérot interference can occur and modulate the optical response in the heterostructure; however, this remains elusive. Herein, we observe the Fabry-Pérot interference on photoluminescence (PL) and Raman spectra in monolayer WS2/SiP2 heterostructures by varying the thickness of bottom SiP2 from 2 to 193 nm, which serves as the Fabry-Pérot cavity. Both the intensities of the PL spectra and the E2g1 Raman mode of WS2/SiP2 heterostructures first decrease to almost zero while displaying an interference increase at a SiP2 thickness of 75 nm. Our findings clearly demonstrate the Fabry-Pérot interference in the optical response of heterostructures, providing crucial information to optimize the optical response and paving the way toward photodetector applications.

13.
Nanotechnology ; 33(2)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34614484

ABSTRACT

In nanocomposite electrodes, besides the synergistic effect that takes advantage of the merits of each component, phase interfaces between the components would contribute significantly to the overall electrochemical properties. However, the knowledge of such effects is far from being well developed up to now. The present work aims at a mechanistic understanding of the phase interface effect in C@TiO2core-shell nanocomposite anode which is both scientifically and industrially important. Firstly, amorphous C, anatase TiO2and C@anatse-TiO2electrodes are compared. The C@anatase-TiO2shows an obvious higher specific capacity (316.5 mAh g-1at a current density of 37 mA g-1after 100 cycles) and Li-ion diffusion coefficient (4.0 × 10-14cm2s-1) than the amorphous C (178 mAh g-1and 2.9 × 10-15cm2s-1) and anatase TiO2(120 mAh g-1and 1.6 × 10-15cm2s-1) owing to the C/TiO2phase interface effect. Then, C@anatase/rutile-TiO2is obtained by a heat treatment of the C@anatase-TiO2. Due to an anatase-to-rutile phase transformation and diffusion of C along the anatase/rutile phase interface, additional abundant C/TiO2phase interfaces are created. This endows the C@anatase/rutile-TiO2with further boosted specific capacity (409.4 mAh g-1at 37 mA g-1after 100 cycles) and Li-ion diffusion coefficient (3.2 × 10-13cm2s-1), and excellent rate capability (368.6 mAh g-1at 444 mA g-1). These greatly enhanced electrochemical properties explicitly reveal phase interface engineering as a feasible way to boost the electrochemical performance of nanocomposite anodes for Li-ion batteries.

14.
ACS Appl Mater Interfaces ; 12(43): 49101-49110, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33063985

ABSTRACT

In the mixed matrix membrane (MMM), the interface between the filler and the polymer matrix will directly affect the gas separation performance of the membranes. Reasonable interfacial design in MMMs is thus important and necessary. In this work, metal-organic coordination interaction is used to construct the interface in metal-organic framework (MOF) nanosheet-based polyimide MMMs where ultrathin Co-benzenedicarboxylate MOF nanosheets (CBMNs) with a thickness less than 5 nm and a lateral size more than 5 µm are synthesized as fillers and a carboxyl-functionalized polyimide (6FDA-durene-DABA) is used as a polymer matrix. Because of the high aspect ratio (>1000) of CBMNs, abundant metal-organic coordination bonds are formed between Co2+ in CBMNs and the -COOH group in 6FDA-durene-DABA. As a result, the 6FDA-durene-DABA/CBMN MMMs exhibit improved separation performance for the CO2/CH4 and H2/CH4 gas pairs with H2/CH4 and CO2/CH4 selectivities up to 42.0 ± 4.0 and 33.6 ± 3.0, respectively. The enhanced interfacial interaction leads to the comprehensive separation performance of CO2/CH4 and H2/CH4 gas pairs approaching or surpassing the 2008 Robeson upper bound. In addition, the CO2 plasticization pressure of the MMMs is significantly enhanced up to ∼20 bar, which is 2 times that of the pure 6FDA-durene-DABA membrane. When separating a mixed gas of CO2/CH4, the selectivity of CO2/CH4 remains stable at around 23 and the CO2 permeability keeps around 400 barrer during the long-term test.

15.
ACS Appl Mater Interfaces ; 12(41): 46900-46907, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32931238

ABSTRACT

Interlayer coupling in two-dimensional (2D) layered materials plays an important role in controlling their properties. 2H- and 3R-MoS2 with different stacking orders and the resulting interlayer coupling have been recently discovered to have different band structures and a contrast behavior in valley physics. However, the role of carrier doping in interlayer coupling in 2D materials remains elusive. Here, based on the electric double layer interface, we demonstrated the experimental observation of carrier doping-enhanced interlayer coupling in 3R-MoS2. A remarkable tuning of interlayer Raman modes can be observed by changing the stacking sequence and carrier doping near their monolayer limit. The modulated interlayer vibration modes originated from the interlayer coupling show a doping-induced blue shift and are supposed to be associated with the interlayer coupling enhancement, which is further verified using our first-principles calculations. Such an electrical control of interlayer coupling of layered materials in an electrical gating geometry provides a new degree of freedom to modify the physical properties in 2D materials.

16.
Environ Sci Technol ; 54(15): 9437-9444, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32639147

ABSTRACT

Cerium oxide (CeO2) nanoparticles (NPs) are massively used as abrasives in the chemical and mechanical polishing (CMP), an essential process to manufacture semiconductor wafers. The CMP process for arsenide-based semiconductor materials produces wastewater with co-occurring arsenic (As) ions and CeO2 NPs. We found that CeO2 NPs adsorbed both arsenite (As(III)) and arsenate (As(V)) ions and the adsorption isotherms suggested different adsorption energies and capacities of the two species. Applying the ferric reducing ability for nanoparticle assay, we revealed that the adsorbed As(III) and As(V) each reduced CeO2 NP surface reactivity but followed different mechanisms. The adsorbed As(III) ions below a critical coverage (110 mmol/kg) increased occupation of Ce 4f orbitals and thus reduced electron mobility of the original CeO2 NPs. The adsorbed As(V) ions withdrew electrons from Ce 4f orbitals and likely became oxidizing agents that greatly inhibited the original surface reducing ability. Electron paramagnetic resonance analysis further revealed that adsorbed As(III) and As(V) ions decreased the propensity of CeO2 NPs to produce reactive oxygen species. This work highlights the importance of examining NPs in their post-use phases in which surface reactivity and hazard potential can be greatly altered by chemical exposure history and NP surface transformations.


Subject(s)
Arsenic , Cerium , Metal Nanoparticles , Nanoparticles , Adsorption , Ions
17.
Environ Sci Technol ; 52(22): 13289-13297, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30351045

ABSTRACT

We designed the "catalytic reactivity to nanoparticle" assay (CRNP), which uses a dry powder containing methylene blue (MB) and sodium borohydride (NaBH4) to rapidly (2 min) detect metallic nanoparticles in water. Tested with gold (Au) NPs in water, the CRNP response was linearly and reproducibly correlated to the NP surface-area concentration and has a detection limit of 0.3 m2/m3 as the equivalent surface area of Au NPs. We described the heterogeneous catalytic mechanisms on the NP surface by treating the NPs as electrodes, which store and transfer electrons, and comprehensively simulated the kinetics of borohydride hydrolysis, MB reduction, and leuco methylene blue (LMB) oxidation. CRNP was able to assess the catalytic reactivity of multiple engineered NP species in water, including Au, silver, palladium, platinum, and copper oxide (CuO), and quantify them with pre-established calibration curves. In water samples containing known or unknown NP species, CRNP can be reported as an equivalent surface area of gold NPs per volume of solution and directly quantifies NP reactivity in response to electron mediated stimuli, which may become relevant to the environmental fate or safety of nanomaterials.


Subject(s)
Metal Nanoparticles , Water , Catalysis , Gold , Silver
18.
Bull Environ Contam Toxicol ; 100(1): 120-126, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29164274

ABSTRACT

Single particle inductively coupled plasma mass spectrometry (spICP-MS) was used to detect Ti-containing particles in heavily-used bathing areas of a river (Salt River) and five swimming pools. Ti-containing particle concentrations in swimming pools ranged from 2.8 × 103 to 4.4 × 103 particles/mL and were an order of magnitude lower than those detected in the Salt River. Measurements from the Salt River showed an 80% increase in Ti-containing particle concentration over baseline concentration during peak recreational activity (at 16:00 h) in the river. Cloud point extraction followed by transmission electron microscopy with energy dispersive X-ray analysis confirmed presence of aggregated TiO2 particles in river samples, showing morphological similarity to particles present in an over-the-counter sunscreen product. The maximum particle mass concentration detected in a sample from the Salt River (659 ng/L) is only slightly lower than the predicted no effect concentration for TiO2 to aquatic organisms (< 1 µg/L).


Subject(s)
Environmental Monitoring/methods , Titanium/analysis , Water Pollutants, Chemical/analysis , Mass Spectrometry/methods , Microscopy, Electron, Transmission , Rivers , Spectrum Analysis , Sunscreening Agents/analysis
19.
Environ Sci Technol ; 48(17): 10291-300, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25122540

ABSTRACT

The quantification and characterization of natural, engineered, and incidental nano- to micro-size particles are beneficial to assessing a nanomaterial's performance in manufacturing, their fate and transport in the environment, and their potential risk to human health. Single particle inductively coupled plasma mass spectrometry (spICP-MS) can sensitively quantify the amount and size distribution of metallic nanoparticles suspended in aqueous matrices. To accurately obtain the nanoparticle size distribution, it is critical to have knowledge of the size detection limit (denoted as Dmin) using spICP-MS for a wide range of elements (other than a few available assessed ones) that have been or will be synthesized into engineered nanoparticles. Herein is described a method to estimate the size detection limit using spICP-MS and then apply it to nanoparticles composed of 40 different elements. The calculated Dmin values correspond well for a few of the elements with their detectable sizes that are available in the literature. Assuming each nanoparticle sample is composed of one element, Dmin values vary substantially among the 40 elements: Ta, U, Ir, Rh, Th, Ce, and Hf showed the lowest Dmin values, ≤10 nm; Bi, W, In, Pb, Pt, Ag, Au, Tl, Pd, Y, Ru, Cd, and Sb had Dmin in the range of 11-20 nm; Dmin values of Co, Sr, Sn, Zr, Ba, Te, Mo, Ni, V, Cu, Cr, Mg, Zn, Fe, Al, Li, and Ti were located at 21-80 nm; and Se, Ca, and Si showed high Dmin values, greater than 200 nm. A range of parameters that influence the Dmin, such as instrument sensitivity, nanoparticle density, and background noise, is demonstrated. It is observed that, when the background noise is low, the instrument sensitivity and nanoparticle density dominate the Dmin significantly. Approaches for reducing the Dmin, e.g., collision cell technology (CCT) and analyte isotope selection, are also discussed. To validate the Dmin estimation approach, size distributions for three engineered nanoparticle samples were obtained using spICP-MS. The use of this methodology confirms that the observed minimum detectable sizes are consistent with the calculated Dmin values. Overall, this work identifies the elements and nanoparticles to which current spICP-MS approaches can be applied, in order to enable quantification of very small nanoparticles at low concentrations in aqueous media.


Subject(s)
Elements , Limit of Detection , Nanoparticles/chemistry , Particle Size , Spectrophotometry, Atomic/methods , Environment , Humans , Nanotechnology , Rivers/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Water/chemistry
20.
Environ Sci Technol ; 48(11): 6391-400, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24754874

ABSTRACT

Titanium dioxide (TiO2) is widely used in food products, which will eventually enter wastewater treatment plants and terrestrial or aquatic environments, yet little is known about the fraction of this TiO2 that is nanoscale, or the physical and chemical properties of TiO2 that influence its human and environmental fate or toxicity. Instead of analyzing TiO2 properties in complex food or environmental samples, we procured samples of food-grade TiO2 obtained from global food suppliers and then, using spectroscopic and other analytical techniques, quantified several parameters (elemental composition, crystal structure, size, and surface composition) that are reported to influence environmental fate and toxicity. Another sample of nano-TiO2 that is generally sold for catalytic applications (P25) and widely used in toxicity studies, was analyzed for comparison. Food-grade and P25 TiO2 are engineered products, frequently synthesized from purified titanium precursors, and not milled from bulk scale minerals. Nanosized materials were present in all of the food-grade TiO2 samples, and transmission electron microscopy showed that samples 1-5 contained 35, 23, 21, 17, and 19% of nanosized primary particles (<100 nm in diameter) by number, respectively (all primary P25 particles were <100 nm in diameter). Both types of TiO2 aggregated in water with an average hydrodynamic diameter of >100 nm. Food-grade samples contained phosphorus (P), with concentrations ranging from 0.5 to 1.8 mg of P/g of TiO2. The phosphorus content of P25 was below inductively coupled plasma mass spectrometry detection limits. Presumably because of a P-based coating detected by X-ray photoelectron spectroscopy, the ζ potential of the food-grade TiO2 suspension in deionized water ranged from -10 to -45 mV around pH 7, and the iso-electric point for food-grade TiO2 (

Subject(s)
Environmental Pollutants/chemistry , Food Industry , Metal Nanoparticles/chemistry , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...