Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 132: 434-444, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30290335

ABSTRACT

A split-root system was established to investigate the effects of uniform (0/0, 50/50, and 200/200 mM salt [NaCl]) and non-uniform (0/200 and 50/200 mM NaCl) salt stress on growth, ion regulation, and the antioxidant defense system of alfalfa (Medicago sativa) by comparing a salt-tolerant (Zhongmu No.1) and salt-sensitive (Algonquin) cultivar. We found that non-uniform salinity was associated with greater plant growth rate and shoot dry weight, lower leaf Na+ concentration, higher leaf potassium cation (K+) concentration, lower lipid peroxidation, and greater superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), and peroxidase (EC 1.11.1.7) activities, compared to uniform salt stress in both alfalfa cultivars. Under non-uniform salinity, a significant increase in Na+ concentration and Na+ efflux and a decline in K+ efflux in the no-saline or low-saline part of the roots alleviated salt damage. Our results also demonstrated that proline and antioxidant enzymes accumulated in both the no- or low-saline and high-saline roots, revealing that osmotic adjustment and antioxidant defense had systemic rather than localized effects in alfalfa plants, and there was a functional equilibrium within the root system under non-uniform salt stress. The salt-tolerant cultivar Zhongmu No.1 exhibited greater levels of growth compared to Algonquin under both uniform and non-uniform salt stress, with Na+ tolerance and efflux abilities more effective and greater antioxidant defense capacity evident for cultivar Zhongmu No.1.


Subject(s)
Antioxidants/metabolism , Medicago sativa/growth & development , Medicago sativa/immunology , Plant Roots/growth & development , Salinity , Biomass , Catalase/metabolism , Chlorophyll/metabolism , Ions , Malondialdehyde/metabolism , Oxidative Stress , Peroxidase/metabolism , Plant Leaves/metabolism , Plant Roots/metabolism , Potassium/metabolism , Proline/metabolism , Sodium/metabolism , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...