Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1358673, 2024.
Article in English | MEDLINE | ID: mdl-38410731

ABSTRACT

Cadmium (Cd) pollution severely affects plant growth and development, posing risks to human health throughout the food chain. Improved iron (Fe) nutrients could mitigate Cd toxicity in plants, but the regulatory network involving Cd and Fe interplay remains unresolved. Here, a transcription factor gene of alfalfa, MsbHLH115 was verified to respond to iron deficiency and Cd stress. Overexpression of MsbHLH115 enhanced tolerance to Cd stress, showing better growth and less ROS accumulation in Arabidopsis thaliana. Overexpression of MsbHLH115 significantly enhanced Fe and Zn accumulation and did not affect Cd, Mn, and Cu concentration in Arabidopsis. Further investigations revealed that MsbHLH115 up-regulated iron homeostasis regulation genes, ROS-related genes, and metal chelation and detoxification genes, contributing to attenuating Cd toxicity. Y1H, EMSA, and LUC assays confirmed the physical interaction between MsbHLH115 and E-box, which is present in the promoter regions of most of the above-mentioned iron homeostasis regulatory genes. The transient expression experiment showed that MsbHLH115 interacted with MsbHLH121pro. The results suggest that MsbHLH115 may directly regulate the iron-deficiency response system and indirectly regulate the metal detoxification response mechanism, thereby enhancing plant Cd tolerance. In summary, enhancing iron accumulation through transcription factor regulation holds promise for improving plant tolerance to Cd toxicity, and MsbHLH115 is a potential candidate for addressing Cd toxicity issues.

2.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840365

ABSTRACT

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Subject(s)
Glycine max , Transcriptome , Glycine max/genetics , Transcriptome/genetics , Plant Breeding , Quantitative Trait Loci , Seeds/genetics
3.
Plants (Basel) ; 12(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37631204

ABSTRACT

Dongfudou 3 is a highly sought-after soybean variety due to its lack of beany flavor. To support molecular breeding efforts, we conducted a genomic survey using next-generation sequencing. We determined the genome size, complexity, and characteristics of Dongfudou 3. Furthermore, we constructed a chromosome-level draft genome and speculated on the molecular basis of protein deficiency in GmLOX1, GmLOX2, and GmLOX3. These findings set the stage for high-quality genome analysis using third-generation sequencing. The estimated genome size is approximately 1.07 Gb, with repetitive sequences accounting for 72.50%. The genome is homozygous and devoid of microbial contamination. The draft genome consists of 916.00 Mb anchored onto 20 chromosomes, with annotations of 46,446 genes and 77,391 transcripts, achieving Benchmarking Single-Copy Orthologue (BUSCO) completeness of 99.5% for genome completeness and 99.1% for annotation. Deletions and substitutions were identified in the three GmLox genes, and they also lack corresponding active proteins. Our proposed approach, involving k-mer analysis after filtering out organellar DNA sequences, is applicable to genome surveys of all plant species, allowing for accurate assessments of size and complexity. Moreover, the process of constructing chromosome-level draft genomes using closely related reference genomes offers cost-effective access to valuable information, maximizing data utilization.

4.
ISME Commun ; 3(1): 89, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37640896

ABSTRACT

Identifying the ecological forces that structure root-associated microbial communities is an essential step toward more sustainable agriculture. Legumes are widely utilized as model plants to study selective forces and their functioning in plant-microbial interactions owing to their ability to establish mutualism with rhizobia. Root nodules act as symbiotic organs to optimize the cost-benefit balance in this mutualistic relationship by modulating the number of nodules. However, it is not known whether the number of nodules is related to the structure of root-associated bacterial communities. Here, the root-associated bacterial communities of soybean grown in native soil by means of soybean cultivars with super- or normal nodulation were investigated across four developmental stages. We compared ecological processes between communities and found decreased relative importance of neutral processes for super-nodulating soybean, although the overall structures resembled those of normal-nodulating soybean. We identified the generalist core bacterial populations in each root-associated compartment, that are shared across root-associated niches, and persist through developmental stages. Within core bacterial species, the relative abundances of bacterial species in the rhizosphere microbiome were linked to host-plant functional traits and can be used to predict these traits from microbes using machine learning algorithms. These findings broaden the comprehensive understanding of the ecological forces and associations of microbiotas in various root-associated compartments and provide novel insights to integrate beneficial plant microbiomes into agricultural production to enhance plant performance.

5.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511038

ABSTRACT

Iron(Fe) is a trace metal element necessary for plant growth, but excess iron is harmful to plants. Natural resistance-associated macrophage proteins (NRAMPs) are important for divalent metal transport in plants. In this study, we isolated the MsNRAMP2 (MN_547960) gene from alfalfa, the perennial legume forage. The expression of MsNRAMP2 is specifically induced by iron excess. Overexpression of MsNRAMP2 conferred transgenic tobacco tolerance to iron excess, while it conferred yeast sensitivity to excess iron. Together with the MsNRAMP2 gene, MsMYB (MN_547959) expression is induced by excess iron. Y1H indicated that the MsMYB protein could bind to the "CTGTTG" cis element of the MsNRAMP2 promoter. The results indicated that MsNRAMP2 has a function in iron transport and its expression might be regulated by MsMYB. The excess iron tolerance ability enhancement of MsNRAMP2 may be involved in iron transport, sequestration, or redistribution.


Subject(s)
Iron Overload , Nicotiana , Nicotiana/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Iron/metabolism , Medicago sativa/genetics , Iron Overload/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
6.
J Integr Plant Biol ; 65(8): 1983-2000, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37066995

ABSTRACT

Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.


Subject(s)
Glycine max , Seeds , Glycine max/metabolism , Phenotype , Seeds/genetics , Seeds/metabolism , Gene Expression Profiling , Fatty Acids/metabolism
7.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36866859

ABSTRACT

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Subject(s)
Droughts , Glycine max , Glycine max/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sodium Chloride/pharmacology , Plants, Genetically Modified/metabolism , Stress, Physiological , Zinc/metabolism , Gene Expression Regulation, Plant
8.
Curr Biol ; 33(2): 252-262.e4, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36538932

ABSTRACT

In many plants, flowering time is influenced by daylength as an adaptive response. In soybean (Glycine max) cultivars, however, photoperiodic flowering reduces crop yield and quality in high-latitude regions. Understanding the genetic basis of wild soybean (Glycine soja) adaptation to high latitudes could aid breeding of improved cultivars. Here, we identify the Tof4 (Time of flowering 4) locus, which encodes by an E1-like protein, E1La, that represses flowering and enhances adaptation to high latitudes in wild soybean. Moreover, we found that Tof4 physically associates with the promoters of two important FLOWERING LOCUS T (FT2a and FT5a) and with Tof5 to inhibit their transcription under long photoperiods. The effect of Tof4 on flowering and maturity is mediated by FT2a and FT5a proteins. Intriguingly, Tof4 and the key flowering repressor E1 independently but additively regulate flowering time, maturity, and grain yield in soybean. We determined that weak alleles of Tof4 have undergone natural selection, facilitating adaptation to high latitudes in wild soybean. Notably, over 71.5% of wild soybean accessions harbor the mutated alleles of Tof4 or a previously reported gain-of-function allele Tof5H2, suggesting that these two loci are the genetic basis of wild soybean adaptation to high latitudes. Almost no cultivated soybean carries the mutated tof4 allele. Introgression of the tof4-1 and Tof5H2 alleles into modern soybean or editing E1 family genes thus represents promising avenues to obtain early-maturity soybean, thereby improving productivity in high latitudes.


Subject(s)
Glycine max , Plant Proteins , Glycine max/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Breeding , Adaptation, Physiological/genetics , Acclimatization/genetics , Photoperiod , Flowers/physiology , Gene Expression Regulation, Plant
9.
Front Plant Sci ; 14: 1289801, 2023.
Article in English | MEDLINE | ID: mdl-38250443

ABSTRACT

Iron deficiency is a major nutritional problem causing iron deficiency chlorosis (IDC) and yield reduction in soybean, one of the most important crops. The ATP-binding cassette G subfamily plays a crucial role in substance transportation in plants. In this study, we cloned the GmABCG5 gene from soybean and verified its role in Fe homeostasis. Analysis showed that GmABCG5 belongs to the ABCG subfamily and is subcellularly localized at the cell membrane. From high to low, GmABCG5 expression was found in the stem, root, and leaf of young soybean seedlings, and the order of expression was flower, pod, seed stem, root, and leaf in mature soybean plants. The GUS assay and qRT-PCR results showed that the GmABCG5 expression was significantly induced by iron deficiency in the leaf. We obtained the GmABCG5 overexpressed and inhibitory expressed soybean hairy root complexes. Overexpression of GmABCG5 promoted, and inhibition of GmABCG5 retarded the growth of soybean hairy roots, independent of nutrient iron conditions, confirming the growth-promotion function of GmABCG5. Iron deficiency has a negative effect on the growth of soybean complexes, which was more obvious in the GmABCG5 inhibition complexes. The chlorophyll content was increased in the GmABCG5 overexpression complexes and decreased in the GmABCG5 inhibition complexes. Iron deficiency treatment widened the gap in the chlorophyll contents. FCR activity was induced by iron deficiency and showed an extraordinary increase in the GmABCG5 overexpression complexes, accompanied by the greatest Fe accumulation. Antioxidant capacity was enhanced when GmABCG5 was overexpressed and reduced when GmABCG5 was inhibited under iron deficiency. These results showed that the response mechanism to iron deficiency is more actively mobilized in GmABCG5 overexpression seedlings. Our results indicated that GmABCG5 could improve the plant's tolerance to iron deficiency, suggesting that GmABCG5 might have the function of Fe mobilization, redistribution, and/or secretion of Fe substances in plants. The findings provide new insights into the ABCG subfamily genes in the regulation of iron homeostasis in plants.

10.
BMC Genomics ; 23(1): 749, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36368932

ABSTRACT

Flowering time and active accumulated temperature (AAT) are two key factors that limit the expanded production especially for soybean across different regions. Wild soybean provides an important germplasm for functional genomics study in cultivar soybean. However, the studies on genetic basis underlying flowering time in response to AAT especially in wild soybean were rarely reported. In this study, we used 294 wild soybean accessions derived from major soybean production region characterized by different AAT in Northeast of China. Based on genome-wide association study (GWAS), we identified 96 SNPs corresponded to 342 candidate genes that significantly associated with flowering time recorded in two-year experiments. Gene Ontology enrichment analysis suggests that the pathways of photosynthesis light reaction and actin filament binding were significantly enriched. We found three lead SNPs with -log10(p-value) > 32 across the two-year experiments, i.e., Chr02:9490318, Chr04:8545910 and Chr09:49553555. Linkage disequilibrium block analysis shows 28 candidate genes within the genomic region centered on the lead SNPs. Among them, expression levels of three genes (aspartic peptidase 1, serine/threonine-protein kinase and protein SCAR2-like) were significantly differed between two subgroups possessing contrasting flowering time distributed at chromosome 2, 4 and 9, respectively. There are 6, 7 and 3 haplotypes classified on the coding regions of the three genes, respectively. Collectively, accessions with late flowering time phenotype are typically derived from AAT zone 1, which is associated with the haplotypic distribution and expression levels of the three genes. This study provides an insight into a potential mechanism responsible for flowering time in response to AAT in wild soybean, which could promote the understanding of genetic basis for other major crops.


Subject(s)
Genome-Wide Association Study , Glycine max , Glycine max/genetics , Quantitative Trait Loci , Temperature , Linkage Disequilibrium , Polymorphism, Single Nucleotide
11.
Sheng Wu Gong Cheng Xue Bao ; 38(8): 2725-2737, 2022 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-36002406

ABSTRACT

Iron (Fe) is an important trace element involved in many important plant physiological and metabolic processes such as photosynthesis, respiration and nitrogen metabolism. Plants maintain iron homeostasis through absorption, transporting, storage and redistribution of iron. Iron metabolism is strictly regulated in plants. Iron regulatory transcription factors and iron transporters constitute the regulatory network of plant iron absorption and transport in plants. Ferritin and iron transporter jointly regulate the response to excess iron in plants. In recent years, important progress has been made in understanding how abscisic acid (ABA) regulates iron metabolism in plants. ABA may be used as a signal to regulate the absorption, transportation and reuse of Fe, or to relieve the symptoms of iron stress by regulating the oxidative stress responses in plants. In order to gain deeper insights into the crosstalk of ABA and iron metabolism in plants, this review summarized the mechanisms of iron absorption and transport and metabolic regulatory network in plants, as well as the mechanisms of ABA in regulating iron metabolism. The relationship between ABA and FER-like iron deficiency-induced transcription factor (FIT), iron-regulated transporter 1 (IRT1), and oxidative stress of iron deficiency were highlighted, and future research directions were prospected.


Subject(s)
Abscisic Acid , Plants , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Homeostasis , Iron/metabolism , Plants/metabolism , Transcription Factors/metabolism
12.
Curr Issues Mol Biol ; 44(7): 3194-3207, 2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35877445

ABSTRACT

Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.

13.
Curr Biol ; 32(8): 1728-1742.e6, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35263616

ABSTRACT

Soybean (Glycine max) grows in a wide range of latitudes, but it is extremely sensitive to photoperiod, which reduces its yield and ability to adapt to different environments. Therefore, understanding of the genetic basis of soybean adaptation is of great significance for breeding and improvement. Here, we characterized Tof18 (SOC1a) that conditions early flowering and growth habit under both short-day and long-day conditions. Molecular analysis confirmed that the two SOC1 homologs present in soybeans (SOC1a and SOC1b) underwent evolutionary functional divergence, with SOC1a having stronger effects on flowering time and stem node number than SOC1b due to transcriptional differences. soc1a soc1b double mutants showed stronger functional effects than either of the single mutants, perhaps due to the formation of SOC1a and SOC1b homodimers or heterodimers. Additionally, Tof18/SOC1a improves the latitudinal adaptation of cultivated soybeans, highlighting the functional importance of SOC1a. The Tof18G allele facilitates adaptation to high latitudes, whereas Tof18A facilitates adaptation to low latitudes. We demonstrated that SOC1s contribute to floral induction in both leaves and shoot apex through inter-regulation with FTs. The SOC1a-SOC1b-Dt2 complex plays essential roles in stem growth habit by directly binding to the regulatory sequence of Dt1, making the genes encoding these proteins potential targets for genome editing to improve soybean yield via molecular breeding. Since the natural Tof18A allele increases node number, introgressing this allele into modern cultivars could improve yields, which would help optimize land use for food production in the face of population growth and global warming.


Subject(s)
Flowers , Glycine max , Gene Expression Regulation, Plant , Photoperiod , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Theor Appl Genet ; 135(4): 1209-1222, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34989827

ABSTRACT

KEY MESSAGE: Two genes for resistance to Podosphaera xanthii race 1 in melon were identified on chromosomes 10 and 12 of the Cucumis melo cultivar MR-1. Cucumis melo L. is an economically important crop, the production of which is threatened by the prevalence of melon powdery mildew (PM) infections. We herein utilized the MR-1 (P1; resistant to PM) and M4-7 (P2; susceptible to PM) accessions to assess the heritability of PM (race 1) resistance in these melon plants. PM resistance in MR-1 leaves was linked to a dominant gene (CmPMRl), whereas stem resistance was under the control of a recessive gene (CmPMrs), with the dominant gene having an epistatic effect on the recessive gene. The CmPMRl gene was mapped to a 50 Kb interval on chromosome 12, while CmPMrs was mapped to an 89 Kb interval on chromosome 10. The CmPMRl candidate gene MELO3C002441 and the CmPMrs candidate gene MELO3C012438 were identified through sequence alignment, functional annotation, and expression pattern analyzes of all genes within these respective intervals. MELO3C002441 and MELO3C012438 were both localized to the cellular membrane and were contained conserved NPR gene-like and MLO domains, respectively, which were linked to PM resistance. In summary, we identified patterns of PM resistance in the disease-resistant MR-1 melon cultivar and identified two putative genes linked to resistance. Our results offer new genetic resources and markers to guide future marker-assisted breeding for PM resistance in melon.


Subject(s)
Ascomycota , Cucumis melo , Cucurbitaceae , Cucumis melo/genetics , Cucurbitaceae/genetics , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics
16.
Insect Sci ; 27(5): 1019-1030, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31271503

ABSTRACT

The soybean aphid, Aphis glycines, is an extreme specialist and an important invasive pest that relies on olfaction for behaviors such as feeding, mating, and foraging. Odorant-binding proteins (OBPs) play a vital role in olfaction by binding to volatile compounds and by regulating insect sensing of the environment. In this work we used rapid amplification of complementary DNA ends technology to identify and characterize 10 genes encoding A. glycines OBPs (AglyOBPs) belonging to 3 subfamilies, including 4 classic OBPs, 5 Plus-C OBPs, and one Minus-C OBP. Quantitative real-time polymerase chain reaction demonstrated variable specific expression patterns for the 10 genes based on developmental stage and aphid tissue sampled. Expression levels of 7 AglyOBPs (2, 3, 4, 5, 7, 9, and 10) were highest in the 4th instar, indicating that the 4th nymphal instar is an important developmental period during which soybean aphids regulate feeding and search for host plants. Tissue-specific expression results demonstrated that AglyOBP2, 7, and 9 exhibited significantly higher expression levels in antennae. Meanwhile, ligand-binding analysis of 5 OBPs demonstrated binding of AglyOBP2 and AglyOBP3 to a broad spectrum of volatiles released by green leaf plants, with bias toward 6- to 8-carbon chain volatiles and strong binding of AglyOBP7 to trans-ß-farnesene. Taken together, our findings build a foundation of knowledge for use in the study of molecular olfaction mechanisms and provide insights to guide future soybean aphid research.


Subject(s)
Aphids/genetics , Insect Proteins/genetics , Receptors, Odorant/genetics , Transcriptome , Animals , Aphids/growth & development , Female , Insect Proteins/chemistry , Insect Proteins/metabolism , Nymph/genetics , Nymph/growth & development , Organ Specificity , Receptors, Odorant/chemistry , Receptors, Odorant/metabolism
17.
J Exp Bot ; 69(21): 5089-5104, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30113693

ABSTRACT

Soybean (Glycine max) was domesticated from its wild relative Glycine soja. However, the genetic variations underlying soybean domestication are not well known. Comparative transcriptomics revealed that a small portion of the orthologous genes might have been fast evolving. In contrast, three gene expression clusters were identified as divergent by their expression patterns, which occupied 37.44% of the total genes, hinting at an essential role for gene expression alteration in soybean domestication. Moreover, the most divergent stage in gene expression between wild and cultivated soybeans occurred during seed development around the cotyledon stage (15 d after fertilization, G15). A module in which the co-expressed genes were significantly down-regulated at G15 of wild soybeans was identified. The divergent clusters and modules included substantial differentially expressed genes (DEGs) between wild and cultivated soybeans related to cell division, storage compound accumulation, hormone response, and seed maturation processes. Chromosomal-linked DEGs, quantitative trait loci controlling seed weight and oil content, and selection sweeps revealed candidate DEGs at G15 in the fruit-related divergence of G. max and G. soja. Our work establishes a transcriptomic selection mechanism for altering gene expression during soybean domestication, thus shedding light on the molecular networks underlying soybean seed development and breeding strategy.


Subject(s)
Domestication , Genetic Variation , Glycine max/genetics , Seeds/growth & development , Transcriptome , Biological Evolution
18.
Mol Plant ; 10(5): 670-684, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28363587

ABSTRACT

Cultivated soybeans may lose some useful genetic loci during domestication. Introgression of genes from wild soybeans could broaden the genetic background and improve soybean agronomic traits. In this study, through whole-genome sequencing of a recombinant inbred line population derived from a cross between a wild soybean ZYD7 and a cultivated soybean HN44, and mapping of quantitative trait loci for seed weight, we discovered that a phosphatase 2C-1 (PP2C-1) allele from wild soybean ZYD7 contributes to the increase in seed weight/size. PP2C-1 may achieve this function by enhancing cell size of integument and activating a subset of seed trait-related genes. We found that PP2C-1 is associated with GmBZR1, a soybean ortholog of Arabidopsis BZR1, one of key transcription factors in brassinosteroid (BR) signaling, and facilitate accumulation of dephosphorylated GmBZR1. In contrast, the PP2C-2 allele with variations of a few amino acids at the N-terminus did not exhibit this function. Moreover, we showed that GmBZR1 could promote seed weight/size in transgenic plants. Through analysis of cultivated soybean accessions, we found that 40% of the examined accessions do not have the PP2C-1 allele, suggesting that these accessions can be improved by introduction of this allele. Taken together, our study identifies an elite allele PP2C-1, which can enhance seed weight and/or size in soybean, and pinpoints that manipulation of this allele by molecular-assisted breeding may increase production in soybean and other legumes/crops.


Subject(s)
Glycine max/genetics , Plant Proteins/genetics , Protein Phosphatase 2C/genetics , Quantitative Trait Loci , Seeds/genetics , Alleles , Chromosome Mapping , Crops, Agricultural/genetics , Crosses, Genetic , DNA, Plant , Genes, Plant , Phosphorylation , Plants, Genetically Modified , Sequence Analysis, DNA , Transcription Factors/metabolism
19.
Plant Physiol ; 173(4): 2208-2224, 2017 04.
Article in English | MEDLINE | ID: mdl-28184009

ABSTRACT

Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops.


Subject(s)
Glycine max/metabolism , Plant Oils/metabolism , Plant Proteins/metabolism , Seeds/metabolism , Zinc Fingers , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Domestication , Fatty Acids/metabolism , Gene Expression Regulation, Plant , Lipid Metabolism/genetics , Lipids/biosynthesis , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Sequence Homology, Amino Acid , Glycine max/genetics , Glycine max/physiology , Triglycerides/metabolism
20.
Plant J ; 86(6): 530-44, 2016 06.
Article in English | MEDLINE | ID: mdl-27062090

ABSTRACT

Cultivated soybean has undergone many transformations during domestication. In this paper we report a comprehensive assessment of the evolution of gene co-expression networks based on the analysis of 40 transcriptomes from developing soybean seeds in cultivated and wild soybean accessions. We identified 2680 genes that are differentially expressed during seed maturation and established two cultivar-specific gene co-expression networks. Through analysis of the two networks and integration with quantitative trait locus data we identified two potential key drivers for seed trait formation, GA20OX and NFYA. GA20OX encodes an enzyme in a rate-limiting step of gibberellin biosynthesis, and NFYA encodes a transcription factor. Overexpression of GA20OX and NFYA enhanced seed size/weight and oil content, respectively, in seeds of transgenic plants. The two genes showed significantly higher expression in cultivated than in wild soybean, and the increases in expression were associated with genetic variations in the promoter region of each gene. Moreover, the expression of GA20OX and NFYA in seeds of soybean accessions correlated with seed weight and oil content, respectively. Our study reveals transcriptional adaptation during soybean domestication and may identify a mechanism of selection by expression for seed trait formation, providing strategies for future breeding practice.


Subject(s)
Glycine max/genetics , Quantitative Trait Loci/genetics , Seeds/genetics , Transcriptome/genetics , Domestication , Genotype , Plants, Genetically Modified/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...