Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Methods Chem ; 2023: 8819534, 2023.
Article in English | MEDLINE | ID: mdl-38025822

ABSTRACT

The Dahuoluo pill (DHLP) is a classic Chinese patent medicine used to treat rheumatoid arthritis and other conditions. However, there has been no research on the chemical components of DHLP and the mechanisms by which it ameliorates rheumatoid arthritis. Hence, we analysed the chemical components of DHLP and the DHLP components absorbed in blood by using ultraperformance liquid chromatography-Q-exactive-orbitrap-mass spectrometry. We then used network pharmacology to predict the underlying mechanisms by which DHLP ameliorates rheumatoid arthritis. We identified 153 chemical compounds from DHLP, together with 27 prototype components absorbed in blood. We selected 48 of these compounds as potential active ingredients to explore the mechanism. These compounds are related to 88 significant pathways, which are linked to 18 core targets. This study preliminarily reveals the potential mechanisms by which DHLP ameliorates rheumatoid arthritis and provides a basis for further evaluation of the drug's efficacy.

2.
Article in English | MEDLINE | ID: mdl-37329776

ABSTRACT

Functional dyspepsia (FD) is one of the more common functional disorders, with a prevalence of 20-25 %. It seriously affects the quality life of patients. Xiaopi Hewei Capsule (XPHC) is a classic formula originated from the Chinese Miao minority. Clinical studies have demonstrated that XPHC can effectively alleviate the symptoms of FD, but the molecular mechanism has not been elucidated. The purpose of this work is to investigate the mechanism of XPHC on FD by integrating metabolomics and network pharmacology. The mice models of FD were established, and gastric emptying rate, small intestine propulsion rate, serum level of motilin and gastrin were evaluate to study the interventional effect of XPHC on FD. Next, a metabolomics strategy has been developed to screen differential metabolites and related metabolic pathways induced by XPHC. Then, prediction of active compounds, targets and pathways of XPHC in treating FD were carried out by commonly used network pharmacological method. Finally, two parts of the results were integrated to investigate therapeutic mechanism of XPHC on FD, which were preliminary validated based on molecular docking. Thus, twenty representative different metabolites and thirteen related pathways of XPHC in treating FD were identified. Most of these metabolites were restored using modulation after XPHC treatment. The results of the network pharmacology analysis showed ten crucial compounds and nine hub genes related to the treatment of FD with XPHC. The further integrated analysis focused on four key targets, such as albumin (ALB), epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF) and roto-oncogene tyrosine-protein kinase Src (SRC), and three representative biomarkers such as citric acid, L-leucine and eicosapentaenoic acid. Furthermore, molecular docking results showed that ten bioactive compounds from XPHC have good binding interactions with the four key genes. The functional enrichment analysis indicated that the potential mechanism of XPHC in treating FD was mainly associated with energy metabolism, amino acid metabolism, lipid metabolism, inflammatory reactions and mucosal repair. Our work confirms that network pharmacology-integrated metabolomics strategyis a powerful means to reveal the therapeutic mechanisms of XPHC improves FD, which contribute its further scientific research.


Subject(s)
Drugs, Chinese Herbal , Dyspepsia , Animals , Mice , Network Pharmacology , Systems Biology , Molecular Docking Simulation , Metabolomics , Drugs, Chinese Herbal/pharmacology
3.
Article in English | MEDLINE | ID: mdl-36299773

ABSTRACT

San-Jiu-Wei-Tai granules (SJWTG) are a significant Chinese patent medicine for the treatment of chronic gastritis (CG), having outstanding advantages in long-term treatment; however, the chemical composition and potential mechanism have not been investigated until now. In this study, a rapid separation and identification method based on UPLC-QE-Orbitrap-MS was established, and 95 chemical components from SJWTGs were identified, including 6 chemical components of an unknown source that are not derived from the 8 herbs included in SJWTGs. The identified chemical components were subsequently analysed by network pharmacology, suggesting that the core targets for the treatment of CG with SJWTGs were EGFR, SRC, AKT1, HSP90AA1, MAPK1, and MAPK3 and thus indicating that SJWTGs could reduce the inflammatory response of gastric epithelial cells and prevent persistent chronic inflammation that induces cancerization by regulating the MAPK signalling pathway and the C-type lectin receptor signalling pathway as well as their upstream and downstream pathways in the treatment of CG. The key bioactive components in SJWTGs were identified as 2,6-bis(4-ethylphenyl)perhydro-1,3,5,7-tetraoxanaphth-4-ylethane-1,2-diol, a chemical component of an unknown source, murrangatin, meranzin hydrate, paeoniflorin, and albiflorin. The results of molecular docking showed the strong binding interaction between the key bioactive components and the core targets, demonstrating that the key bioactive components deserve to be further studied and considered as Q-markers. By acting on multiple targets, SJWTG is less susceptible to drug resistance during the long-term treatment of CG, indicating the advantage of Chinese patent medicines. Furthermore, the preventive effect of SJWTGs on gastric cancer also demonstrates the superiority of preventive treatment of disease with traditional Chinese medicine.

4.
J Sep Sci ; 45(18): 3382-3392, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35851721

ABSTRACT

Epimedium has a wide range of clinical applications; however, there have been numerous reports of adverse reactions in recent years, which has resulted in it being changed from a widely recognized "nontoxic" to a "potentially toxic" traditional Chinese medicine. The combination of Epimedium and Ligustri lucidi fructus is commonly used in the clinic. The purpose of this study was to investigate the pharmacokinetic characteristics of Epimedium and Ligustri lucidi fructus to explore the possible synergism and reduction in toxicity. Based on liquid chromatography tandem mass spectrometry, a method was established for the determination of icariin, epimedin A, epimedin B, epimedin C, baohuoside Ⅰ, and specnuezhenide in biological samples and was successfully applied to study the pharmacokinetics of the drug pair. The results showed that the five flavonoids (specnuezhenide could not be detected) could be rapidly absorbed into the blood, and the second peak time in vivo was earlier after the combination, indicating that the metabolic pathway may be changed. In addition, combination with Ligustri lucidi fructus could significantly reduce the concentration of 5 flavonoids in vivo and increase their elimination rate, which may attenuate their virulence, thus providing a reference for the rational clinical use of Epimedium.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Ligustrum , Chromatography, High Pressure Liquid , Flavonoids , Ligustrum/chemistry , Medicine, Chinese Traditional
5.
Biomed Chromatogr ; 36(4): e5341, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35045589

ABSTRACT

Neurotransmitters play an important role in regulating the physiological activity of the animal, especially in emotion and sleep, whereas nucleotides are involved in almost all cellular processes. However, the characteristics of sleep-related neurochemicals under different life cycles and environments remain poorly understood. A rapid and sensitive analytical method was established with LC-MS/MS to determine eight endogenous neurochemicals in Drosophila melanogaster, and their levels in the different developmental stages of D. melanogaster were evaluated. The results indicated that there were significant discrepancies among different stages, especially from the pupal stage to the adult stage. The levels of these compounds in the caffeine-induced insomnia model of D. melanogaster were investigated. Compared with the normal group, the eight endogenous metabolites did not fluctuate significantly in insomnia D. melanogaster, which may be due to the mechanism of caffeine-induced insomnia through other pathways, such as adenosine. The results provide a reference for decoding neurochemicals involved in the development of the full cycle of mammalian life and the exploration of insomnia and even other mental diseases induced by exogenous substances in the future.


Subject(s)
Drosophila melanogaster , Sleep Initiation and Maintenance Disorders , Animals , Chromatography, Liquid , Drosophila melanogaster/physiology , Mammals , Sleep , Tandem Mass Spectrometry
6.
J Sep Sci ; 44(21): 3933-3958, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34473407

ABSTRACT

Baihe Dihuang decoction is a commonly used herbal formula to treat depression and insomnia in traditional Chinese medicine. This study established a liquid chromatography-mass spectrometry method to investigate the potential active ingredients and the components absorbed in the blood and brain tissue of mice. Using a new data processing method, 94 chemical components were identified, 33 and 9 of which were absorbed in the blood and brain. More interestingly, we analyzed the substance changes during co-decoction and the characteristics of the compounds absorbed in the blood and brain. The results show that 71 newly generated chemical components were discovered from co-decoction: 38 with fragment information and five absorbed in the blood. Ultimately, the results of molecular docking show that these components have excellent performance in proteins of γ-aminobutyric acid, serotonin and melatonin receptors. The docking results of emodin with Monoamine Oxidase A and Melatonin Receptor 1A, and luteolin with Solute Carrier Family 6 Member 4, Glyoxalase I, Monoamine Oxidase B and Melatonin Receptor 1A, may explain the mechanism of action of Baihe Dihuang decoction in treating insomnia and depression. Overall, our research results may provide novel perspectives for further understanding of the effective substances in Baihe Dihuang decoction.


Subject(s)
Chromatography, Liquid/methods , Drugs, Chinese Herbal , Mass Spectrometry/methods , Animals , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Male , Mice , Mice, Inbred ICR , Molecular Docking Simulation
7.
Article in English | MEDLINE | ID: mdl-34333214

ABSTRACT

Zuojin decoction (ZJD) is a classic pair composed of Coptidis Rhizoma and Evodiae Fructus, which is suitable for treating gastrointestinal diseases and tumours, etc. In recent years, scientists have been widely focused on research into the treatment of liver cancer using ZJD; however, the effective substances have not yet been comprehensively elucidated. The difference between the co-decoction and the single decoction of ZJD is revealed in this paper based on the UPLC-QE-Orbitrap-MS, and the chemical components absorbed into the blood and liver of mice have been analyzed simultaneously. In addition, the combination of prototype components absorbed into the liver with liver cancer-related targets has been performed via molecular docking to explore the mechanism of ZJD in treating liver cancer. By comparing the co-decoction and single decoction of ZJD, 44 new components appeared during co-decoction and 76 known chemical compounds have been identified at the same time. It has been confirmed that 35 known components and 11 new components were absorbed into the blood. Furthermore, 20 known components were discovered from the sample of liver tissue. Molecular docking results showed that 3-O-feruloylquinic acid has good conjugation with Bcl-2, Stat3, mTOR, and mmp9. Catechin has the lowest binding energy with CDK6 and ß-catenin. The study provides data for the further confirmation of the material basis and mechanism of ZJD in treating liver cancer, and provides a new idea for the researches on the compatibility mechanism of prescriptions of traditional Chinese medicine.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology , Herb-Drug Interactions , Liver/metabolism , Liver Neoplasms/metabolism , Mass Spectrometry , Medicine, Chinese Traditional , Mice , Molecular Docking Simulation
8.
Front Pharmacol ; 12: 830558, 2021.
Article in English | MEDLINE | ID: mdl-35095537

ABSTRACT

Background: Zhi-Zi-Hou-Po Decoction (ZZHPD), a classic traditional Chinese medicine (TCM) formula, is clinically used to treat insomnia and depression. The analysis strategy based on the concept of co-decoction of TCM is helpful to analyse the effective substances of TCM formula in depth. Aim of the study: This manuscript intends to take ZZHPD as a model sample to explore the phenomenon of co-decoction of complex formula in the combination of liquid chromatography-mass spectrometry (LC-MS) technology, data analysis, and molecular docking. Materials and methods: In the current research, an innovative LC-MS method has been established to study the active ingredients in ZZHPD, and to identify the ingredients absorbed into the blood and brain tissues of mice. And molecular docking was used to study the binding pattern and affinities of known compounds of the brain tissue toward insomnia related proteins. Results: Based on new processing methods and analysis strategies, 106 chemical components were identified in ZZHPD, including 28 blood components and 18 brain components. Then, by comparing the different compounds in the co-decoction and single decoction, it was surprisingly found that 125 new ingredients were produced during the co-decoction, 2 of which were absorbed into the blood and 1 of which was absorbed into brain tissue. Ultimately, molecular docking studies showed that 18 brain components of ZZHPD had favourable binding conformation and affinity with GABA, serotonin and melatonin receptors. The docking results of GABRA1 with naringenin and hesperidin, HCRTR1 with naringenin-7-O-glucoside, poncirenin and genipin 1-gentiobioside, and luteolin with SLC6A4, GLO1, MAOB and MTNR1A may clarify the mechanism of action of ZZHPD in treating insomnia and depression. Conclusion: Our study may provide new ideas for further exploring the effective substances in ZZHPD.

SELECTION OF CITATIONS
SEARCH DETAIL
...