Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Genome Med ; 14(1): 62, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35698242

ABSTRACT

BACKGROUND: Genomics enables individualized diagnosis and treatment, but large challenges remain to functionally interpret rare variants. To date, only one causative variant has been described for KCNK9 imprinting syndrome (KIS). The genotypic and phenotypic spectrum of KIS has yet to be described and the precise mechanism of disease fully understood. METHODS: This study discovers mechanisms underlying KCNK9 imprinting syndrome (KIS) by describing 15 novel KCNK9 alterations from 47 KIS-affected individuals. We use clinical genetics and computer-assisted facial phenotyping to describe the phenotypic spectrum of KIS. We then interrogate the functional effects of the variants in the encoded TASK3 channel using sequence-based analysis, 3D molecular mechanic and dynamic protein modeling, and in vitro electrophysiological and functional methodologies. RESULTS: We describe the broader genetic and phenotypic variability for KIS in a cohort of individuals identifying an additional mutational hotspot at p.Arg131 and demonstrating the common features of this neurodevelopmental disorder to include motor and speech delay, intellectual disability, early feeding difficulties, muscular hypotonia, behavioral abnormalities, and dysmorphic features. The computational protein modeling and in vitro electrophysiological studies discover variability of the impact of KCNK9 variants on TASK3 channel function identifying variants causing gain and others causing loss of conductance. The most consistent functional impact of KCNK9 genetic variants, however, was altered channel regulation. CONCLUSIONS: This study extends our understanding of KIS mechanisms demonstrating its complex etiology including gain and loss of channel function and consistent loss of channel regulation. These data are rapidly applicable to diagnostic strategies, as KIS is not identifiable from clinical features alone and thus should be molecularly diagnosed. Furthermore, our data suggests unique therapeutic strategies may be needed to address the specific functional consequences of KCNK9 variation on channel function and regulation.


Subject(s)
Intellectual Disability , Potassium Channels, Tandem Pore Domain , Genotype , Humans , Intellectual Disability/genetics , Muscle Hypotonia , Mutation , Phenotype , Potassium Channels, Tandem Pore Domain/genetics , Potassium Channels, Tandem Pore Domain/metabolism
2.
Channels (Austin) ; 15(1): 208-228, 2021 12.
Article in English | MEDLINE | ID: mdl-33487118

ABSTRACT

Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the ß1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Erythromelalgia , HEK293 Cells , Humans , Membrane Potentials , Patch-Clamp Techniques
3.
JACC Case Rep ; 2(7): 1066-1069, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-34317416

ABSTRACT

Our patient presented in her third trimester of pregnancy with new onset of heart failure. A thorough workup in the initial postpartum period with detailed past medical history, advanced imaging modalities, and a multidisciplinary approach revealed a rare and treatable etiology of cardiomyopathy. (Level of Difficulty: Intermediate.).

6.
J Emerg Med ; 56(1): e1-e4, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30420309

ABSTRACT

BACKGROUND: RIPPLY2-associated spondylocostal dysostosis is a rare disorder that leads to segmentation defects of the vertebrae. These vertebral defects can result in severe instability of the cervical spine, leading to cardiac arrest after only minor whiplash injury. CASE REPORT: We present the case of a healthy 7-year-old child who experienced an out-of-hospital cardiac arrest. He was reported to have profound respiratory distress and collapsed after going down a slide, without trauma. He was resuscitated in the field, and presented to the emergency department, where return of spontaneous circulation was achieved. Imaging of his cervical spine revealed multiple abnormalities. It was determined that a whiplash injury led to hypoxia and bradycardia due to the anatomic abnormalities of his cervical spine, resulting in cardiovascular collapse. He recovered fully and was later diagnosed with SCDO6, an autosomal recessive inherited disorder caused by a mutation in the RIPPLY2 gene. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Unfamiliarity of providers with this mechanism of cardiac arrest, and the rarity of the syndrome itself, make early recognition very difficult. Late diagnosis and lack of preventative measures, including immediate cervical spine stabilization, can lead to catastrophic outcomes. In patients with cardiac arrest of unclear etiology, early consideration of cervical spine immobilization and evaluation can be lifesaving.


Subject(s)
Cervical Vertebrae/injuries , Hernia, Diaphragmatic/complications , Out-of-Hospital Cardiac Arrest/etiology , Abnormalities, Multiple/genetics , Accidents, Traffic , Cervical Vertebrae/abnormalities , Cervical Vertebrae/diagnostic imaging , Child , Genetic Diseases, Inborn , Hernia, Diaphragmatic/genetics , Humans , Joint Instability/complications , Joint Instability/diagnosis , Joint Instability/diagnostic imaging , Male , Resuscitation/methods
7.
Nat Commun ; 9(1): 4619, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397230

ABSTRACT

Chromatin remodeling is of crucial importance during brain development. Pathogenic alterations of several chromatin remodeling ATPases have been implicated in neurodevelopmental disorders. We describe an index case with a de novo missense mutation in CHD3, identified during whole genome sequencing of a cohort of children with rare speech disorders. To gain a comprehensive view of features associated with disruption of this gene, we use a genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3 mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase domain of the encoded protein. Modeling their impact on the three-dimensional structure demonstrates disturbance of critical binding and interaction motifs. Experimental assays with six of the identified mutations show that a subset directly affects ATPase activity, and all but one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a syndrome characterized by intellectual disability, macrocephaly, and impaired speech and language.


Subject(s)
DNA Helicases/genetics , Developmental Disabilities/genetics , Language Disorders/genetics , Megalencephaly/genetics , Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics , Mutation, Missense , Neurodevelopmental Disorders/genetics , Protein Domains/genetics , Speech Disorders/genetics , Adenosine Triphosphatases , Child, Preschool , Chromatin Assembly and Disassembly , Female , Gene Expression , Genotype , HEK293 Cells , Humans , Intellectual Disability/genetics , Male , Models, Molecular , Phenotype , Whole Genome Sequencing
8.
J Clin Ultrasound ; 46(1): 66-68, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28374935

ABSTRACT

No published case of Wolman's disease has described the prenatal sonographic findings. We present a case in which a third-trimester sonographic examination demonstrated fetal hepatomegaly and bilateral adrenal echogenicity suggestive of diffuse calcification. Wolman's disease, also known as lysosomal acid lipase (LIPA) deficiency, is a rare autosomal-recessive disorder characterized by complete absence of the LIPA enzyme. The diagnosis of Wolman's disease was made postnatally by biochemical testing, which indicated absence of LIPA enzyme activity and gene sequencing, which confirmed homozygosity for the G66V mutation within the LIPA gene. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 46:66-68, 2018.


Subject(s)
Fetal Diseases/diagnostic imaging , Ultrasonography, Prenatal/methods , Wolman Disease/diagnostic imaging , Female , Humans , Pregnancy , Pregnancy Trimester, Third
9.
J Med Genet ; 54(2): 84-86, 2017 02.
Article in English | MEDLINE | ID: mdl-27389779

ABSTRACT

BACKGROUND: The causes of intellectual disability (ID) are diverse and de novo mutations are increasingly recognised to account for a significant proportion of ID. METHODS AND RESULTS: In this study, we performed whole exome sequencing on a large cohort of patients with ID or neurodevelopmental delay and identified four novel de novo predicted deleterious missense variants in HECW2 in six probands with ID/developmental delay and hypotonia. Other common features include seizures, strabismus, nystagmus, cortical visual impairment and dysmorphic facial features. HECW2 is an ubiquitin ligase that stabilises p73, a crucial mediator of neurodevelopment and neurogenesis. CONCLUSION: This study implicates pathogenic genetic variants in HECW2 as potential causes of neurodevelopmental disorders in humans.


Subject(s)
Intellectual Disability/genetics , Muscle Hypotonia/genetics , Neurodevelopmental Disorders/genetics , Tumor Protein p73/genetics , Ubiquitin-Protein Ligases/genetics , Child , Child, Preschool , Exome/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/pathology , Male , Muscle Hypotonia/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/pathology
10.
Am J Hum Genet ; 98(5): 1001-1010, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27108799

ABSTRACT

Whole-exome sequencing of 13 individuals with developmental delay commonly accompanied by abnormal muscle tone and seizures identified de novo missense mutations enriched within a sub-region of GNB1, a gene encoding the guanine nucleotide-binding protein subunit beta-1, Gß. These 13 individuals were identified among a base of 5,855 individuals recruited for various undiagnosed genetic disorders. The probability of observing 13 or more de novo mutations by chance among 5,855 individuals is very low (p = 7.1 × 10(-21)), implicating GNB1 as a genome-wide-significant disease-associated gene. The majority of these 13 mutations affect known Gß binding sites, which suggests that a likely disease mechanism is through the disruption of the protein interface required for Gα-Gßγ interaction (resulting in a constitutively active Gßγ) or through the disruption of residues relevant for interaction between Gßγ and certain downstream effectors (resulting in reduced interaction with the effectors). Strikingly, 8 of the 13 individuals recruited here for a neurodevelopmental disorder have a germline de novo GNB1 mutation that overlaps a set of five recurrent somatic tumor mutations for which recent functional studies demonstrated a gain-of-function effect due to constitutive activation of G protein downstream signaling cascades for some of the affected residues.


Subject(s)
Developmental Disabilities/etiology , GTP-Binding Protein beta Subunits/genetics , Germ-Line Mutation/genetics , Intellectual Disability/etiology , Muscle Hypotonia/etiology , Seizures/etiology , Adolescent , Adult , Child , Child, Preschool , Developmental Disabilities/pathology , Exome/genetics , Female , GTP-Binding Protein beta Subunits/chemistry , Humans , Infant , Intellectual Disability/pathology , Male , Muscle Hypotonia/pathology , Phenotype , Protein Conformation , Seizures/pathology , Signal Transduction , Young Adult
11.
Genet Med ; 18(5): 452-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26312827

ABSTRACT

PURPOSE: The purpose of this study was to enhance understanding of lysosomal acid lipase deficiency (LALD) in infancy. METHODS: Investigators reviewed medical records of infants with LALD and summarized data for the overall population and for patients with and without early growth failure (GF). Kaplan-Meier survival analyses were conducted for the overall population and for treated and untreated patients. RESULTS: Records for 35 patients, 26 with early GF, were analyzed. Prominent symptom manifestations included vomiting, diarrhea, and steatorrhea. Median age at death was 3.7 months; estimated probability of survival past age 12 months was 0.114 (95% confidence interval (CI): 0.009-0.220). Among patients with early GF, median age at death was 3.5 months; estimated probability of survival past age 12 months was 0.038 (95% CI: 0.000-0.112). Treated patients (hematopoietic stem cell transplant (HSCT), n = 9; HSCT and liver transplant, n = 1) in the overall population and the early GF subset survived longer than untreated patients, but survival was still poor (median age at death, 8.6 months). CONCLUSIONS: These data confirm and expand earlier insights on the progression and course of LALD presenting in infancy. Despite variations in the nature, onset, and severity of clinical manifestations, and treatment attempts, clinical outcome was poor.Genet Med 18 5, 452-458.


Subject(s)
Hematopoietic Stem Cell Transplantation , Sterol Esterase/genetics , Wolman Disease/genetics , Wolman Disease/therapy , Disease Progression , Female , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , Treatment Outcome , Wolman Disease/mortality , Wolman Disease/pathology , Wolman Disease
12.
Pediatr Res ; 78(6): 717-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26331768

ABSTRACT

BACKGROUND: Previous studies have shown that elosulfase alfa has a favorable efficacy/safety profile in Morquio A patients aged ≥5 y. This study evaluated safety and impact on urine keratan sulfate (uKS) levels and growth velocity in younger patients. METHODS: Fifteen Morquio A patients aged <5 y received elosulfase alfa 2.0 mg/kg/week for 52 wk during the primary treatment phase of a phase II, open-label, multinational study. Primary endpoint was safety and tolerability; secondary endpoints were change in uKS and growth velocity over 52 wk. RESULTS: All 15 patients completed the primary treatment phase. Six of 743 infusions (0.8%) administered led to adverse events (AEs) requiring infusion interruption and medical intervention. Eleven patients (73.3%) had ≥1 study drug-related AE, mostly infusion-associated reactions. Mean z-score growth rate per year numerically improved from -0.6 at baseline to -0.4 at week 52. Comparison to untreated subjects of similar age in the Morquio A Clinical Assessment Program study showed a smaller decrease in height z-scores for treated than for untreated patients. Mean percent change from baseline in uKS was -30.2% at 2 wk and -43.5% at 52 wk. CONCLUSION: Early intervention with elosulfase alfa is well-tolerated and produces a decrease in uKS and a trend toward improvement in growth.


Subject(s)
Chondroitinsulfatases/administration & dosage , Enzyme Replacement Therapy , Mucopolysaccharidosis IV/drug therapy , Age Factors , Biomarkers/urine , Body Height/drug effects , Child Development/drug effects , Child, Preschool , Chondroitinsulfatases/adverse effects , Drug Administration Schedule , Early Medical Intervention , Enzyme Replacement Therapy/adverse effects , Europe , Female , Humans , Infant , Infusions, Intravenous , Keratan Sulfate/urine , Male , Mucopolysaccharidosis IV/diagnosis , Mucopolysaccharidosis IV/enzymology , Mucopolysaccharidosis IV/physiopathology , Mucopolysaccharidosis IV/urine , Recombinant Proteins/administration & dosage , Time Factors , Treatment Outcome , United Kingdom
13.
Hum Mutat ; 36(11): 1052-63, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26178382

ABSTRACT

Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients.


Subject(s)
Amino Acid Substitution , Codon , Mutation, Missense , Neurofibromin 1/genetics , Noonan Syndrome/diagnosis , Noonan Syndrome/genetics , Phenotype , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Dwarfism/genetics , Female , Genetic Association Studies , Humans , Infant , Male , Middle Aged , Neurofibromin 1/chemistry , Young Adult
14.
Nat Genet ; 47(6): 647-53, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961942

ABSTRACT

Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.


Subject(s)
Brachydactyly/genetics , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Hypertension/congenital , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Case-Control Studies , Cell Differentiation , Child , Female , Genetic Association Studies , HeLa Cells , Humans , Hypertension/genetics , Kinetics , Male , Mesenchymal Stem Cells/physiology , Mice , Middle Aged , Molecular Sequence Data , Mutation, Missense , Myocytes, Smooth Muscle/physiology , Pedigree
15.
Hum Mutat ; 34(10): 1415-23, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23878096

ABSTRACT

We describe the molecular and clinical characterization of nine individuals with recurrent, 3.4-Mb, de novo deletions of 3q13.2-q13.31 detected by chromosomal microarray analysis. All individuals have hypotonia and language and motor delays; they variably express mild to moderate cognitive delays (8/9), abnormal behavior (7/9), and autism spectrum disorders (3/9). Common facial features include downslanting palpebral fissures with epicanthal folds, a slightly bulbous nose, and relative macrocephaly. Twenty-eight genes map to the deleted region, including four strong candidate genes, DRD3, ZBTB20, GAP43, and BOC, with important roles in neural and/or muscular development. Analysis of the breakpoint regions based on array data revealed directly oriented human endogenous retrovirus (HERV-H) elements of ~5 kb in size and of >95% DNA sequence identity flanking the deletion. Subsequent DNA sequencing revealed different deletion breakpoints and suggested nonallelic homologous recombination (NAHR) between HERV-H elements as a mechanism of deletion formation, analogous to HERV-I-flanked and NAHR-mediated AZFa deletions. We propose that similar HERV elements may also mediate other recurrent deletion and duplication events on a genome-wide scale. Observation of rare recurrent chromosomal events such as these deletions helps to further the understanding of mechanisms behind naturally occurring variation in the human genome and its contribution to genetic disease.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , Cognition Disorders/genetics , Developmental Disabilities/genetics , Endogenous Retroviruses/genetics , Muscle Hypotonia/genetics , Adolescent , Adult , Base Sequence , Child , Child, Preschool , Chromosome Breakpoints , Cognition Disorders/diagnosis , Comparative Genomic Hybridization , Developmental Disabilities/diagnosis , Facies , Female , Gene Order , Humans , Infant , Male , Molecular Sequence Data , Muscle Hypotonia/diagnosis , Phenotype , Sequence Alignment , Syndrome , Young Adult
16.
J Hepatol ; 58(6): 1230-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23485521

ABSTRACT

Cholesteryl ester storage disease (CESD) is caused by deficient lysosomal acid lipase (LAL) activity, predominantly resulting in cholesteryl ester (CE) accumulation, particularly in the liver, spleen, and macrophages throughout the body. The disease is characterized by microvesicular steatosis leading to liver failure, accelerated atherosclerosis and premature demise. Although CESD is rare, it is likely that many patients are unrecognized or misdiagnosed. Here, the findings in 135 CESD patients described in the literature are reviewed. Diagnoses were based on liver biopsies, LAL deficiency and/or LAL gene (LIPA) mutations. Hepatomegaly was present in 99.3% of patients; 74% also had splenomegaly. When reported, most patients had elevated serum total cholesterol, LDL-cholesterol, triglycerides, and transaminases (AST, ALT, or both), while HDL-cholesterol was decreased. All 112 liver biopsied patients had the characteristic pathology, which is progressive, and includes microvesicular steatosis, which leads to fibrosis, micronodular cirrhosis, and ultimately to liver failure. Pathognomonic birefringent CE crystals or their remnant clefts were observed in hepatic cells. Extrahepatic manifestations included portal hypertension, esophageal varices, and accelerated atherosclerosis. Liver failure in 17 reported patients resulted in liver transplantation and/or death. Genotyping identified 31 LIPA mutations in 55 patients; 61% of mutations were the common exon 8 splice-junction mutation (E8SJM(-1G>A)), for which 18 patients were homozygous. Genotype/phenotype correlations were limited; however, E8SJM(-1G>A) homozygotes typically had early-onset, slowly progressive disease. Supportive treatment included cholestyramine, statins, and, ultimately, liver transplantation. Recombinant LAL replacement was shown to be effective in animal models, and recently, a phase I/II clinical trial demonstrated its safety and indicated its potential metabolic efficacy.


Subject(s)
Cholesterol Ester Storage Disease/therapy , Cholesterol/blood , Cholesterol Ester Storage Disease/complications , Cholesterol Ester Storage Disease/diagnosis , Cholesterol Ester Storage Disease/genetics , Cholesterol Ester Storage Disease/pathology , Enzyme Replacement Therapy , Humans , Liver/pathology , Liver Transplantation , Triglycerides/blood , Wolman Disease/complications , Wolman Disease
17.
Neurogenetics ; 14(2): 99-111, 2013 May.
Article in English | MEDLINE | ID: mdl-23389741

ABSTRACT

MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types.


Subject(s)
Child , Epilepsy/genetics , Haploinsufficiency/genetics , Hyperkinesis/genetics , Interneurons/metabolism , Nerve Net/growth & development , Adolescent , Adult , Animals , Child, Preschool , Developmental Disabilities/genetics , Female , Gene Deletion , Humans , Infant , MEF2 Transcription Factors/genetics , Male , Mice , Mice, Inbred C57BL , Middle Aged , Phenotype , Young Adult
18.
Am J Hum Genet ; 90(2): 356-62, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22284827

ABSTRACT

We have identified KIF11 mutations in individuals with syndromic autosomal-dominant microcephaly associated with lymphedema and/or chorioretinopathy. Initial whole-exome sequencing revealed heterozygous KIF11 mutations in three individuals with a combination of microcephaly and lymphedema from a microcephaly-lymphedema-chorioretinal-dysplasia cohort. Subsequent Sanger sequencing of KIF11 in a further 15 unrelated microcephalic probands with lymphedema and/or chorioretinopathy identified additional heterozygous mutations in 12 of them. KIF11 encodes EG5, a homotetramer kinesin motor. The variety of mutations we have found (two nonsense, two splice site, four missense, and six indels causing frameshifts) are all predicted to have an impact on protein function. EG5 has previously been shown to play a role in spindle assembly and function, and these findings highlight the critical role of proteins necessary for spindle formation in CNS development. Moreover, identification of KIF11 mutations in patients with chorioretinopathy and lymphedema suggests that EG5 is involved in the development and maintenance of retinal and lymphatic structures.


Subject(s)
Cholestasis/genetics , Congenital Abnormalities/genetics , Kinesins/genetics , Lymphedema/congenital , Microcephaly/genetics , Mutation , Abnormalities, Multiple/genetics , Cohort Studies , Exome , Facies , Female , Heterozygote , Humans , Lymphedema/genetics , Male , Pedigree , Phenotype , Retinal Dysplasia/genetics
19.
J AAPOS ; 15(3): 295-6, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21680214

ABSTRACT

Duane syndrome is an ocular motility disorder consisting of deficient horizontal eye movements, eyelid retraction, palpebral fissure narrowing, and abnormal vertical eye movements. It occurs in 1%-5% of patients with strabismus and has also been reported in several syndromes and chromosome abnormalities. Although most cases are sporadic, autosomal-dominant inheritance is seen in up to 10% of cases. Recently, Duane syndrome has been reported to occur in the setting of chromosomal duplication. The 48,XXYY syndrome is a rare syndrome involving duplication of the sex chromosomes. Ocular abnormalities are not typical of this condition. We report the first case of Duane syndrome presenting in an 8-month-old boy with XXYY syndrome. This case lends further support to the association of chromosomal duplication and Duane syndrome.


Subject(s)
Chromosome Duplication/genetics , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Duane Retraction Syndrome/genetics , Sex Chromosome Aberrations , Gestational Age , Humans , Infant , Karyotyping , Male
20.
Mol Genet Metab ; 101(2-3): 130-3, 2010.
Article in English | MEDLINE | ID: mdl-20638881

ABSTRACT

Pompe disease is a lysosomal storage disease due to deficient acid α-glucosidase (GAA) activity. Infants with the classic infantile-onset subtype present with severe hypotonia and cardiomegaly, and most expire in the first year of life, whereas the severity of the muscle-based manifestations in patients with the late infantile/juvenile and adult-onset subtypes depends on the level of GAA residual enzymatic activity. The clinical features of later-onset Pompe disease are still emerging, and even the natural history and progression of muscle weakness and respiratory failure, hallmarks of the later-onset subtypes, are not well documented. For example, we report here three later-onset patients who had chronic diarrhea, postprandial bloating and abdominal pain, previously unrecognized manifestations of later-onset Pompe disease. Two patients had intestinal incontinence and one reported synchronous vomiting and diarrhea on a daily basis. These symptoms significantly interfered with their quality of life, often limiting their ability to leave home. All gastrointestinal symptoms resolved within the first six months of enzyme replacement therapy (ERT) with recombinant human alglucosidase alpha (rhGAA). All three patients gained weight and remain symptom free, two for over four years. Thus, gastrointestinal symptoms occur in later-onset patients with Pompe disease and are resolved with ERT.


Subject(s)
Enzyme Replacement Therapy , Gastrointestinal Diseases/drug therapy , Gastrointestinal Tract/physiology , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/therapeutic use , Adolescent , Adult , Child , Child, Preschool , Female , Gastrointestinal Tract/drug effects , Glycogen Storage Disease Type II/diagnosis , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...