Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 115(9): 098301, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26371685

ABSTRACT

We study numerically a model for active suspensions of self-propelled repulsive particles, for which a stable phase separation into a dilute and a dense phase is observed. We exploit the fact that for nonsquare boxes a stable "slab" configuration is reached, in which interfaces align with the shorter box edge. Evaluating a recent proposal for an intensive active swimming pressure, we demonstrate that the excess stress within the interface separating both phases is negative. The occurrence of a negative tension together with stable phase separation is a genuine nonequilibrium effect that is rationalized in terms of a positive stiffness, the estimate of which agrees excellently with the numerical data. Our results challenge effective thermodynamic descriptions and mappings of active Brownian particles onto passive pair potentials with attractions.

2.
J Chem Phys ; 142(22): 224109, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-26071703

ABSTRACT

Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation onto that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.

3.
Phys Rev Lett ; 110(23): 238301, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-25167534

ABSTRACT

We study experimentally and numerically a (quasi-)two-dimensional colloidal suspension of self-propelled spherical particles. The particles are carbon-coated Janus particles, which are propelled due to diffusiophoresis in a near-critical water-lutidine mixture. At low densities, we find that the driving stabilizes small clusters. At higher densities, the suspension undergoes a phase separation into large clusters and a dilute gas phase. The same qualitative behavior is observed in simulations of a minimal model for repulsive self-propelled particles lacking any alignment interactions. The observed behavior is rationalized in terms of a dynamical instability due to the self-trapping of self-propelled particles.

4.
Phys Rev Lett ; 108(16): 168301, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22680759

ABSTRACT

Using Brownian dynamics computer simulations, we show that a two-dimensional suspension of self-propelled ("active") colloidal particles crystallizes at sufficiently high densities. Compared to the equilibrium freezing of passive particles, the freezing density is both significantly shifted and depends on the structural or dynamical criterion employed. In nonequilibrium the transition is accompanied by pronounced structural heterogeneities. This leads to a transition region between liquid and solid in which the suspension is globally ordered but unordered liquidlike "bubbles" still persist.

SELECTION OF CITATIONS
SEARCH DETAIL
...